首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the effect of the intrinsic distribution of cosmological candles is investigated. We find that in the case of a narrow distribution the deviation of the observed modulus of sources from the expected central value can be estimated within a ceratin range. We thus introduce lower and upper limits of X2, X min2 and Xmax2 to estimate cosmological parameters by applying the conventional minimizing X2 method. We apply this method to a gamma-ray burst (GRB) sample as well as to a combined sample including this GRB sample and an SN Ia sample. Our analysis shows that: a) in the case of assuming an intrinsic distribution of candles of the GRB sample, the effect of the distribution is obvious and should not be neglected; b) taking into account this effect would lead to a poorer constraint of the cosmological parameter ranges. The analysis suggests that in the attempt of constraining the cosmological model with current GRB samples, the results tend to be worse than was previously anticipated if the mentioned intrinsic distribution does exist.  相似文献   

2.
Homogeneous cosmology in the braneworld can be studied without solving bulk equations of motion explicitly. The reason is simply because the symmetry of the spacetime restricts possible corrections in the 4-dimensional effective equations of motion. It would be great if we could analyze cosmological perturbations without solving the bulk. For this purpose, we combine the geometrical approach and the low energy gradient expansion method to derive the 4-dimensional effective action. Given our effective action, the standard procedure to obtain the cosmological perturbation theory can be utilized and the temperature anisotropy of the cosmic background radiation can be computed without solving the bulk equations of motion explicitly.  相似文献   

3.
In the present Letter, we consider the DeBroglie-Bohm interpretation of quantum Friedmann-Robertson-Walker (FRW) models in the presence of a negative cosmological constant and cosmic strings. We compute Bohm's trajectories and quantum potentials for a quantity related to the scale factor.  相似文献   

4.
A class of cosmological solutions of massive strings for the Bianchi-IX space-time are obtained within the framework of Lyra geometry. Various physical and kinematical properties of the models are discussed  相似文献   

5.
We present perfect fluid Friedmann–Robertson–Walker quantum cosmological models in the presence of negative cosmological constant. In this work the Schutz’s variational formalism is applied for radiation, dust, cosmic string, and domain wall dominated Universes with positive, negative, and zero constant spatial curvature. In this approach the notion of time can be recovered. These give rise to Wheeler–DeWitt equations for the scale factor. We find their eigenvalues and eigenfunctions by using Spectral Method. After that, we use the eigenfunctions in order to construct wave packets for each case and evaluate the time-dependent expectation value of the scale factors, which are found to oscillate between finite maximum and minimum values. Since the expectation values of the scale factors never tends to the singular point, we have an initial indication that these models may not have singularities at the quantum level.  相似文献   

6.
We present a general class of inhomogeneous cosmological models filled with non-thermalized perfect fluid by assuming that the background spacetime admits two space-like commuting Killing vectors and has separable metric coefficients. The singularity structure of these models depends on the choice of the parameters and the metric functions. A number of previously known perfect fluid models follow as particular cases of this general class. Physical and geometrical features of these models are studied and the general expression for temperature distribution is given.  相似文献   

7.
The Higgs-boson decay \(h \rightarrow \gamma \ell ^+ \ell ^-\) for various lepton states \(\ell = (e, \, \mu , \, \tau )\) is analyzed. The differential decay width and forward–backward asymmetry are calculated as functions of the dilepton invariant mass in a model where the Higgs boson interacts with leptons and quarks via a mixture of scalar and pseudoscalar couplings. These couplings are partly constrained from data on the decays to leptons, \(h \rightarrow \ell ^+ \ell ^-\) , and quarks \(h \rightarrow q \bar{q} \) (where \(q = (c, \, b)\) ), while the Higgs couplings to the top quark are chosen from the two-photon and two-gluon decay rates. Nonzero values of the forward–backward asymmetry will manifest effects of new physics in the Higgs sector. The decay width and asymmetry integrated over the dilepton invariant mass are also presented.  相似文献   

8.
One of the characteristics of the “Matter Bounce” scenario, an alternative to cosmological inflation for producing a scale-invariant spectrum of primordial adiabatic fluctuations on large scales, is a break in the power spectrum at a characteristic scale, below which the spectral index changes from ns=1ns=1 to ns=3ns=3. We study the constraints which current cosmological data place on the location of such a break, and more generally on the position of the break and the slope at length scales smaller than the break. The observational data we use include the WMAP five-year data set (WMAP5), other CMB data from BOOMERanG, CBI, VSA, and ACBAR, large-scale structure data from the Sloan Digital Sky Survey (SDSS, their luminous red galaxies sample), Type Ia Supernovae data (the “Union” compilation), and the Sloan Digital Sky Survey Lyman-α forest power spectrum (Lyα) data. We employ the Markov Chain Monte Carlo method to constrain the features in the primordial power spectrum which are motivated by the matter bounce model. We give an upper limit on the length scale where the break in the spectrum occurs.  相似文献   

9.
L K Patel  Naresh Dadhich 《Pramana》1996,47(5):387-392
We obtain a one parameter class of stationary rotating string cosmological models of which the well-known Gödel universe is a particular case. By suitably choosing the free parameter function, it is always possible to satisfy the energy conditions. The rotation of the model hinges on the cosmological constant which turns out to be negative. String-dust distribution in Gödel-type universes is also briefly discussed.  相似文献   

10.
11.
We find geodesics in a flat universe obeying a perfect gas law for the equation of state, by means of a constant deceleration model. Inflationary and power-law cases are considered.  相似文献   

12.
We consider a recently proposed scenario for the generation of primordial cosmological perturbations, the so called Cosmological Slingshot scenario. We first obtain a general expression for the Slingshot primordial power spectrum which extends previous results by including a blue pre-bounce residual contribution at large scales. Starting from this expression we numerically compute the CMB temperature and polarization power spectra arising from the Slingshot scenario and show that they excellently match the standard WMAP 3-year best-fit results. In particular, if the residual blue spectrum is far above the largest WMAP observed scale, the Slingshot primordial spectrum fits the data well by only fixing its amplitude and spectral index at the pivot scale k p = 10−3 h Mpc−1. We finally show that all possible distinctive Slingshot signatures in the CMB power spectra are confined to very low multipoles and thus very hard to detect due to large cosmic variance dominated error bars at these scales.  相似文献   

13.
A regular solution describing a periodic expansion – contraction process of the Universe is derived. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 46–51, December, 2008.  相似文献   

14.
We discuss the possibility of devising cosmological observables which violate Bell's inequalities. Such observables could be used to argue that cosmic scale features were produced by quantum mechanical effects in the very early universe. As a proof of principle, we propose a somewhat elaborate inflationary model where a Bell inequality violating observable can be constructed.  相似文献   

15.
《Nuclear Physics B》1996,472(3):683-708
The point of this paper is to see what light new results in hyperbolic geometry may throw on gravitational entropy and whether gravitational entropy is relevant for the quantum origin of the universe. We introduce some new gravitational instantons which mediate the birth from nothing of closed universes containing wormholes and suggest that they may contribute to the density matrix of the universe. We also discuss the connection between their gravitational action and the topological and volumetric entropies introduced in hyperbolic geometry. These coincide for hyperbolic 4-manifolds, and increase with increasing topological complexity of the 4-manifold. We raise the question of whether the action also increases with the topological complexity of the initial 3-geometry, measured either by its 3-volume or its Matveev complexity. We point out, in distinction to the non-supergravity case, that universes with domains of negative cosmological constant separated by supergravity domain walls cannot be born from nothing. Finally we point out that our wormholes provide examples of the type of Perpetual Motion machines envisaged by Frolov and Novikov.  相似文献   

16.
We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the universe transits to an isotropic flat FRW universe accommodating the present acceleration. A class of new cosmological solutions is obtained for an anisotropic universe in case an initial anisotropy exists which is bigger than the value determined by the parameter of the kinetic part of the field. Later, an autonomous system of equations for an axially symmetric Bianchi-I universe with phantom field in an exponential potential is studied. We discuss the stability of the cosmological solutions.   相似文献   

17.
The evolution of a superthermal relict plasma component is studied using a nonequilibrium model of the Universe [1] and a kinetic equation of the Fokker–Planck type [2]. Given is the evidence of two maxima in the distribution of superthermal particles. The first maximum can further evolve into an equilibrium distribution, whereas the second one can result in a high-energy tail of superthermal relict particles. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 87–91, February, 2009.  相似文献   

18.
The information of ΩΛ of a flat universe is extracted from K band galaxy number counts, without using evolution (NE) models. Cowie et al.'s observations, with model input luminosity functions taken from Efstathiou et al. (1988), Loveday et al. (1992) and Mobasher et al. (1993), give (ΩΛ) in the range: 0.59~0.81 plus a typical random error of σΩΛ = 0.2 -0.1, respectively. Keck's observations give ΩΛ = 0.9. We conclude that either the normalization of nearby luminosity function is too high or the cosmological constant cannot be too large.  相似文献   

19.
A static cosmological model of the universe based onLyra's modified Riemannian Geometry is proposed. The red-shift of spectral lines from extra-galactic nebulae is shown to be a consequence of an inherent geometrical property of the model independent of expansion. The model is similar to the staticEinstein model but shows a red-shift and has a finite density even without the introduction of a cosmological constant.  相似文献   

20.
We discuss the thermodynamic properties of the Friedmann–Robertson–Walker universe with dark energy fluids labelled by ω=p/ρ<−1/3ω=p/ρ<1/3. Using the integrability condition, we show that the phantom phase of ω<−1ω<1 can still be thermodynamically allowed even when the temperature takes on negative values because in that case, there exists at least a condition of keeping physical values for p and ρ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号