首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 441 毫秒
1.
The interaction between polyelectrolyte complexes formed by a linear polyelectrolyte and a dendrimer or a spherical particle with the opposite charge has been investigated via computer simulation. The influence of the compositions of the complexes on the effective force of the interaction between them has been studied. It has been shown that the effective attraction between the complexes appears at short distances in the vicinity of the isoelectric point. This attraction is correlative in nature and stronger for the complexes of the linear polyelectrolyte with spherical particles than for the complexes with dendrimers.  相似文献   

2.
Monolayers of silica particles at horizontal and vertical octane-water interfaces have been studied by microscopy. It is found that their structure and stability depend strongly on the particle hydrophobicity. Very hydrophobic silica particles, with a contact angle of 152 degrees measured through the water, give well-ordered monolayers at interparticle distances larger than 5 particle diameters which are stable toward aggregation and sedimentation. In contrast, monolayers of less-hydrophobic particles are disordered and unstable. Two-dimensional particle sedimentation has been observed in the case of vertical monolayers. The results have been analyzed with a simple two-particle model considering the sedimentation equilibrium as a balance between the long-range electrostatic repulsion through the oil, the gravity force, and the capillary attraction due to deformation of the fluid interface around particles. The value of the charge density at the particle-octane interface, 14.1 muC/m(2), found for the most hydrophobic particles is reasonable. It drastically decreases for particles with lower hydrophobicity, which is consistent with the order-disorder transition in monolayer structure reported by us before. The pair interactions between particles at a horizontal octane-water interface have been analyzed including the capillary attraction due to undulated three-phase contact line caused by nonuniform wetting (the contact angle hysteresis). The results are in agreement with the great stability of very hydrophobic silica particle monolayers detected experimentally, even at low pH at the point of zero charge of the particle-water interface, and with the aggregated structure of hydrophilic particle monolayers.  相似文献   

3.
The electrostatic interactions between amphoteric polymethyl methacrylate latex particles and proteins with different pI values were investigated. These latex particles possess a net positive charge at low pH, but they become negatively charged at high pH. The nature and degree of interactions between these polymer particles and proteins are primarily controlled by the electrostatic characteristics of the particles and proteins under the experimental conditions. The self-promoting adsorption process from the charge neutralization of latex particles by the proteins, which have the opposite net charge to that of the particles, leads to a rapid reduction in the zeta potential of the particles (in other words colloidal stability), and so strong flocculation occurs. On the other hand, the electrostatic repulsion forces between similarly charged latex particles and the proteins retard the adsorption of protein molecules onto the surfaces of the particles. Therefore, latex particles exhibit excellent colloidal stability over a wide range of protein concentrations. A transition from net negative charge to net positive charge, and vice versa (charge reversal), was observed when the particle surface charge density was not high enough to be predominant in the protein adsorption process.  相似文献   

4.
The equilibrium phase diagram of a colloidal system composed of 1:1 mixture of positive and negative particles with equal charge is studied by means of Monte Carlo simulations. The system is the colloidal analog of the restricted primitive model (RPM) for ionic fluids. A liquid-gas transition is found in the low-temperature-low-density region, similar to the liquid-gas transition in the RPM. The fluid-crystal transition is also studied, and the liquid phase is shown to be stable in a narrow range of temperatures. In the liquid, the pair distribution function shows alternating layers of particles with opposite sign of charge surrounding every particle. In the vapor phase, clusters of particles are observed, again in agreement with the RPM. However, a decreasing distribution of clusters is obtained, instead of the discrimination between charged and neutral clusters found in the RPM.  相似文献   

5.
Double-layer and hydration interactions have been coupled into a single set of equations because both are dependent on the polarization of the water molecules. The coupled equations involve the electric fields generated by the surface charge and surface dipoles, as well as the field due to the neighboring dipoles in water. The dipoles on the surface are generated through the counterions' binding to sites of opposite charge. The equations obtained were employed to explain the restabilization observed experimentally at large ionic strengths for colloidal particles on which protein molecules were adsorbed. Polar molecules adsorbed on a charged surface of colloidal particle can generate a field either in the same direction as that generated by the charge or in the opposite direction. The effect of the sign of the dipole of the adsorbed polar molecules on the interaction between surfaces was also examined.  相似文献   

6.
The dipole moment functions of the titled molecules are written as the sum of a charge and induced atomic dipole contribution and the distance dependence interpreted in terms of these components. These two contributions have opposite signs over a large range of internuclear distances, and when they have equal magnitudes, the dipole moment vanishes. This happens with CO near the equilibrium bond length and is responsible for its small dipole moment. The dipole moment of CS is 0.770(ea0), rather large for a diatomic in which the two atoms have essentially the same electronegativities; this is because for CS, the two components of the dipole moment have the same sign at equilibrium and reinforce one another.  相似文献   

7.
The effect of salts on the solvent-induced interactions between hydrophobic particles dispersed in explicit aqueous solution is investigated as a function of the salt's ionic charge density by molecular dynamics simulations. We demonstrate that aggregates of the hydrophobic particles can be formed or dissolved in response to changes in the charge density of the ions. Ions with high charge density increase the propensity of the hydrophobic particles to aggregate. This corresponds to stronger hydrophobic interactions and a decrease in the solubility (salting-out) of the hydrophobic particles. Ions with low charge density can either increase or decrease the propensity for aggregation depending on whether the concentration of the salt is low or high, respectively. At low concentrations of low charge density ions, the aggregate forms a "micelle-like" structure in which the ions are preferentially adsorbed at the surface of the aggregate. These "micelle-like" structures can be soluble in water so that the electrolyte can both increase the solubility and increase aggregation at the same time. We also find, that at the concentration of the hydrophobic particles studied (approximately 0.75 m), the aggregation process resembles a first-order transition in finite systems.  相似文献   

8.
The flocculation kinetics of kaolin particles induced by two polyelectrolytes is studied by using small-angle laser light scattering (SALLS). Two different methods, image analysis and SALLS, are used to calculated the fractal dimensions of flocs formed under different flocculation mechanisms. For a high charge density of polydiallyldimethylammonium chloride (PDADMAC), the initially flocculation rates are slow due to the quite low molecular weight. Smaller and more compact flocs are in the particle–particle connections, and restructuring of the flocs occurs in the flocculation process. With cationic polyacrylamide C498 of very high molecular weight and low charge density, however, the initially flocculation rates are much higher due to its rapid adsorption on kaolin particles, but it will take the adsorbed polymer a much longer time to reach equilibrium due to re-conformation. High potentialities of adsorption prevent the particles from entering the interior of the floc structure or rearrangement, which results in a more open floc structure. Different underlying flocculation mechanisms are evident for these two kinds of polyelectrolytes, in which charge neutralization is mainly involved for the low molecular weight and high charge density polymer of PDADMAC while polymer bridging is suggested to be the dominant mechanism for the high molecular weight polyelectrolyte of C498.  相似文献   

9.
The validity of the hypothesis of electroneutrality outside the double layer of a suspended particle with an applied ac electric field is analyzed. It is shown that the electrolyte solution remains electroneutral for distances greater than a few Debye lengths from the particle surface only when the diffusion coefficients of the two ion species are identical. On the contrary, in the general case, a volume charge density around the particle builds up, which extends to distances that are proportional to the square root of the effective diffusion coefficient value divided by the frequency. These distances can easily attain many particle radii. Numerical results for both uncharged and charged suspended particles are presented, and a correction to existing analytical expressions for the field-induced ion distributions around uncharged particles (J. Phys. Chem. 2004, 108, 8397) is given. While the charge densities far from the particle are usually very weak, it is shown that they strongly contribute to the dipole coefficient value and, therefore, to the calculated values of the permittivity and conductivity increments. The errors that would be committed if these charge densities were ignored, assuming local electroneutrality and determining the dipole coefficient at a few Debye lengths from the particle surface, are analyzed and shown to be substantial.  相似文献   

10.
The interaction of gum arabic (GA) with chitosan (Ch) of different degree of deacetylation was studied by turbidity measurements, dynamic light scattering and atomic force microscopy. The structure of the complexes was found to be directly related to the charge density of chitosan molecules. Gum arabic and chitosan with a degree of deacetylation of 75% form soluble complexes with a loosely globular structure of about 250 nm, at weight ratios up to 1.2, if the concentrations are kept low (total biopolymer concentration up to 0.06%). If chitosan has a higher charge density (degree of deacetylation of 93%), colloidal particles are formed, independently of the polymer concentration or ratio. At low concentrations and GA/Ch ratios of 1 or 1.2, the particles have diameters of 200-250 nm. The formation of soluble complexes is attributed to a chitosan lower charge density and the presence of non-charged monomers, which prevent the efficient self-assembly of the macromolecules.  相似文献   

11.
A theory is presented for the electrophoretic mobility mu of dilute spherical soft particles (i.e., polyelectrolyte-coated particles) in salt-free media containing only counterions. As in the case of other types of particles (rigid particles and liquid drops) in salt-free media, there is a certain critical value of the particle charge separating two cases, the low-surface-charge case and the high-surface-charge case. For the low-charge case, the mobility is proportional to the particle charge and coincides with that of a soft particle in an electrolyte solution in the limit of very low electrolyte concentrations kappa-->0 (Hückel's limit), where kappa is the Debye-Hückel parameter. For the high-charge case, however, mu becomes essentially constant, independent of the particle charge, due to the counterion condensation effect.  相似文献   

12.
We have prepared gold nanoparticles covered with N-isobutyryl-l-cysteine and N-isobutyryl-d-cysteine, respectively. These particles with a mean particle size smaller than 2 nm are highly soluble in water and are amenable to chiroptical techniques such as vibrational circular dichroism (VCD) and circular dichroism (CD) spectroscopy. Density functional theory shows that the VCD spectra are sensitive toward the conformation of the adsorbed thiol. Based on the comparison between the experimental VCD spectrum and the calculated VCD spectra for different conformers, a preferential conformation of the thiol adsorbed on the gold particles can be proposed. In this conformation the carboxylate group interacts with the gold particle in addition to the sulfur. The particles could furthermore be separated according to their charge and size into well-defined compounds. The optical absorption spectra revealed a well-quantized electronic structure and a systematic red-shift of the absorption onset with increasing gold core size, which was manifested in a color change with particle size. Some compounds showed basically identical absorption spectra as analogous gold particles protected with l-glutathione. This shows that these particles have identical core sizes (10-12, 15 and 18 gold atoms, respectively) and indicates that the number and arrangement of the adsorbed thiol are the same, independent of the two thiols, which have largely different sizes. Some separated compounds show strong optical activity with opposite sign when covered with the d- and l-enantiomer, respectively, of N-isobutyryl-cysteine. The origin of the optical activity in the metal-based transitions is discussed. The observations are consistent with a mechanism based on a chiral footprint on the metal core imparted by the adsorbed thiol.  相似文献   

13.
The sizes of soluble polyelectrolyte complexes formed through mixing of solutions of dimethyl sulfate-alkylated rigid pyridine-containing polyphenylene dendrimers of various generations with the solution of sodium polystyrenesulfonate are measured with the use of dynamic light scattering. Effects of the length of the polyanion chain of the dendrimer, the generation number of the dendrimer, and the charge ratio of polymer components on the sizes of the complexes are examined. The results of this study are in agreement with the theoretical analysis of interaction between the charged dendrimer and the polyelectrolyte of the opposite charge sign and suggest the spontaneous formation of nanosized particles of water-soluble complexes.  相似文献   

14.
The processes of attachment and detachment of small or medium-sized particles to relatively large bubbles during microflotation are considered in terms of the heterocoagulation theory. Calculations are made for the conditions that the surface potentials are of similar sign and constant, that one of the surface potentials is small, that hydrophobic attraction is absent, and that there are no surface deformations. Under these conditions bubble-particle aggregates may form as a result of an electrostatic attraction which exceeds the repulsive van der Waals force at intermediate distances. Next to electrostatic and van der Waals forces, hydrodynamic and gravitational forces are considered. These forces may overcome the electrostatic repulsion at large distances and promote particle bubble attachment. Strong electrostatic attraction at small distances, arising at a large difference of the surface potentials of the bubble and the particle and of low electrolyte concentrations, can prevent subsequent detachment by hydrodynamic and gravitational forces. With increasing electrolyte concentration the electrostatic barrier increases and the attractive electrostatic force diminishes. As a result, a critical electrolyte concentration for microflotation exists. Above this concentration attachment may still occur but it is followed by detachment. At lower electrolyte concentrations the electrostatic attractive force prevents the detachment. The dependence of the critical electrolyte concentration on the values of the bubble and particle potentials and the Hamaker constant is calculated. The critical concentration does not depend on particle or bubble size if the absolute values of the total detachment force and the total pressing force coincide, which is the case for Stokes and potential flow. For every electrolyte concentration lower than the critical value there are two critical particle sizes that limit the flotation possibility. For small particle sizes attachment is impossible because the pressing force is smaller than the electrostatic barrier. For large particle sizes detachment cannot be prevented because the detachment force exceeds the maximum electrostatic attraction. A microflotation domain of intermediate particle sizes exists in which irreversible heterocoagulation occurs. Copyright 2001 Academic Press.  相似文献   

15.
Calculations of surface charge density provide evidence of the physical effects responsible for particles of a dielectric material carrying the same sign of charge being attracted to one another. The results show that attraction requires a mutual polarisation of charge leading to regions of negative and positive surface density close to the point where the particles make contact. These results emphasise the significance of using charged particle models where the surface charge is non-stationary.  相似文献   

16.
The structure of spherical brushes formed by symmetric diblock polyampholytes end-grafted onto small spherical particles in aqueous solution is examined within the framework of the so-called primitive model using Monte Carlo simulations. The properties of the two blocks are identical except for the sign of their charges. Three different chain flexibilities corresponding to flexible, semiflexible, and stiff blocks are considered at various polyampholyte linear charge densities and grafting densities. The link between the two blocks is flexible at all conditions, and the grafted segments are laterally mobile. Radial and lateral spatial distribution functions of different types and single-chain properties are analyzed. The brush structure strongly depends on the chain flexibility. With flexible chains, a disordered polyelectrolyte complex is formed at the surface of the particle, the complex becoming more compact at increasing linear charge density. With stiff blocks, the inner blocks are radially oriented. At low linear charged density, the outer blocks are orientationally disordered, whereas at increasing electrostatic interaction the two blocks of a polyampholyte are parallel and close to each other, leading to an ordered structure referred to as a polyampholyte star. As the grafting density is increased, the brush thickness responds differently for flexible and nonflexible chains, depending on a different balance between electrostatic interactions and excluded volume effects.  相似文献   

17.
The interaction between particles in a colloidal system can be significantly affected by their bridging by polyelectrolyte chains. In this paper, the bridging is investigated by using a self-consistent field approach which takes into account the van der Waals interactions between the segments of the polyelectrolyte molecules and the plates, as well as the electrostatic and volume exclusion interactions. A positive contribution to the force between two plates is generated by the van der Waals interactions between the segments and the plates. This positive (repulsive) contribution plays an important role in the force when the distances between the plates are small. With increasing van der Waals interaction strength between segments and plates, the force between the plates becomes more repulsive at small distances and more attractive at large distances. When the surfaces of the plates have a constant surface electrical potential and a charge sign opposite to that of the polyelectrolyte chains, the force between the two plates becomes less attractive as the bulk polyelectrolyte concentration increases. This behavior is due to a higher bulk counterion concentration dissociated from the polyelectrolyte molecules. At short distances, the force between plates is more repulsive for stiffer chains. A comparison between theoretical and experimental results regarding the contraction of the interlayer separation between the platelets of vermiculite clays against the concentration of poly(vinyl methyl ether) was made.  相似文献   

18.
The electrokinetic properties of suspended spherical particles are examined using a modified standard electrokinetic model, which takes into account the finite ion size and considers that the minimum approach distance of ions to the particle surface need not be equal to their effective radius in the bulk solution. We calculate the conductivity increment and the electrophoretic mobility and present a detailed interpretation of the obtained results, based on the analysis of the equilibrium and field-induced ion concentrations, as well as the convective fluid flow in the neighborhood of the particle surface. We show that when charge reversal takes place, the sign of the concentration polarization remains unchanged while the sign of the electrophoretic mobility only changes under favorable circumstances.  相似文献   

19.
The formation of a line of equally spaced particles at the centerline of a microchannel, referred as “particle ordering,” is desired in several microfluidic applications. Recent experiments and simulations highlighted the capability of viscoelastic fluids to form a row of particles characterized by a preferential spacing. When dealing with non-Newtonian fluids in microfluidics, the adherence condition of the liquid at the channel wall may be violated and the liquid can slip over the surface, possibly affecting the ordering efficiency. In this work, we investigate the effect of wall slip on the ordering of particles suspended in a viscoelastic liquid by numerical simulations. The dynamics of a triplet of particles in an infinite cylindrical channel is first addressed by solving the fluid and particle governing equations. The relative velocities computed for the three-particle system are used to predict the dynamics of a train of particles flowing in a long microchannel. The distributions of the interparticle spacing evaluated at different slip coefficients, linear particle concentrations, and distances from the channel inlet show that wall slip slows down the self-assembly mechanism. For strong slipping surfaces, no significant change of the initial microstructure is observed at low particle concentrations, whereas strings of particles in contact form at higher concentrations. The detrimental effect of wall slip on viscoelastic ordering suggests care when designing microdevices, especially in case of hydrophobic surfaces that may enhance the slipping phenomenon.  相似文献   

20.
In previous papers on the electro-optic effects of beta-FeOOH particles we proposed a new procedure for analysis of the low frequency behavior of charged particles. The procedure is based on comparison of characteristic field intensity curves on an appropriate scale and helps to test the dependence of the slow effects on particle surface electric polarizability (relaxing in the kilohertz domain). The results stimulated us to test the applicability of the method to other samples and to reconsider the literature data on the electro-optic behavior of charged colloids in the hydrodynamic domain. The aim of the present paper is to demonstrate on a series of samples similar features of the electro-optic responses of charged particles in the relaxation interval of particle rotation. The analysis leads to a new hypothesis for explanation of the complicated low frequency behavior of charged particles. The superposition of two slow effects (linear and quadratic with field intensity), relaxing in the relaxation interval of particle rotation, can explain the complicated frequency curves in this domain. One of the slow effects is observed for all polarizable particles. It is of negative sign and displays the features of an induced dipole effect dependent on the "kilohertz" induced moment. It corresponds to a slow stage of the surface polarization process related to electrokinetic charge. The linear slow effect shows permanent dipole like behavior and appears only at certain ionic content of the medium. It shows no direct dependence on counterion mobility and on the "kilohertz" induced moment and is probably due to surface charge nonuniformity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号