首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Raman spectra of highly fluorinated CxF samples (1<x<2) prepared at room temperature and 515°C were measured. CxF samples prepared at room temperature exhibited two Raman bands at 1593–1583 and 1555–1542 cm−1. Graphite samples fluorinated at 515°C for 1 and 2 min also gave similar bands at 1581–1580 and 1550–1538 cm−1. However, graphite samples fluorinated from 15 min to 10 h at 515°C no longer showed such spectra. The Raman peaks shifted to lower frequencies with increasing fluorine concentration in CxF. This trend is due to the weakening of the C---C bonds of the graphene layers. Observation of both kinds of Raman bands suggests the coexistence of two highly fluorinated phases, C2F and C1F, in the samples. The process of formation of graphite fluoride is discussed on the basis of the Raman spectra of CxF samples obtained at 515°C.  相似文献   

2.
Raman spectra were measured of highly fluorinated graphite samples prepared at room temperature, 380 and 515 °C. CxF prepared at room temperature showed a novel downshifted band at 1555–1542 cm−1 along with G band at 1593–1583 cm−1. Similar behavior is also observed for samples prepared at 380 and 515 °C at early stages of fluorination, after which the Raman shifts completely disappeared. Raman spectra as well as X-ray diffraction (XRD) analysis suggest that graphite fluorides, (CF)n and (C2F)n are formed via fluorine-intercalated phase with planar graphene layers.  相似文献   

3.
Resonance Raman spectra of p-nitroaniline (pNA) have been measured in various states of water. The relative intensities of two bands assigned to the NO2 stretching mode show a large temperature dependence along the 30.4 MPa isobar between ambient temperature and 669 K. Along the supercritical isotherm at 668.5 K, the higher frequency band shifts by 8 cm−1 over the accessible density range (0.3–1.7ρc). We also performed density-functional calculations of the Raman spectra of water clusters of pNA. The calculated changes in electronic structure and Raman spectra with cluster size are used to rationalize these experimental observations.  相似文献   

4.
Far-IR absorption and reflection spectra, as well as laser Mandelshtam–Brillouin and Raman scattering spectra of -glycine, β-alanine, -histidine, -tryptophane single crystals in the 0.2–400 cm−1 range were investigated. It was revealed that the far-IR and Raman spectra of the amino acids under study contain more bands than predicted by factor-group analysis, thus indicating a possible contribution of low-energy intramolecular vibrations and overtones, as well as an emergence of forbidden vibrations. Some of the low-frequency bands have never, to our knowledge, been detected previously.  相似文献   

5.
Variable-temperature (72–20 °C) studies of Raman spectra (3100–800 cm−1) and thermal analysis of multicomponent paraffin wax have been carried out. The disorder–order transition under liquid–solid transition was observed and their temperature ranges were obtained through the Slateral order parameter as a function of temperature. From 56 to 43 °C, the paraffin undergoes a conformational state transition of non-extended chain state (NECS) to extended chain state (ECS). The enthalpy and entropy change for the transition obtained by van’t Hoff analysis were 214.286 ± 21 kJ/mol and 0.661 ± 0.066 kJ/mol/K, respectively. The enthalpy determined by differential scanning calorimetry (DSC) was 52.165 ± 5.2 kJ/mol, which is smaller than the van’t Hoff enthalpy due to larger effective non-extended chain state. The variation of Raman spectra with decreasing temperature presents the structure evolution and molecular motion during the crystallization of paraffin wax.  相似文献   

6.
Compounds 3 and 4 have been prepared by the reaction of 4-nitrocatechol 1 and 4-nitrophthalonitrile 2 by a common method, aromatic nucleophilic subtitution of the nitro group in 4-nitrophthalonitrile. Starting from 4 and 1-bromooctane, their alkylation reaction gave compound 5. Zn(II) 8, Co(II) 9 and Lu(III) 10 complexes were synthesized from the corresponding metal salts by the tetramerization of compound 5. Compound 7 was prepared by the statistical condensation of 5 and 4,5-bis(hexylthio)phthalonitrile 6 with CoCl2 · 6H2O in dry dimethylformamide. The new compounds were characterized by FT-IR, UV/Vis, NMR and mass spectra. The electrochemical properties of the complexes were also investigated by cyclic voltammetry in non-aqueous medium. The effect of temperature on the dc conductivity and the impedance spectra of spin coated film of the compounds was investigated at temperatures between 295 and 433 K and in the frequency range 40–105 Hz. Thermally activated conductivity dependence on temperature was observed for all compounds.  相似文献   

7.
The infrared spectra of phosphinic acid R2POOH dimers (R=CH3, CH2Cl, C6H5) have been studied in CCl4 and CH2Cl2 solutions (T=300 K). The infrared spectra of deuterated R2POOD dimers (R=CH3, CH2Cl) were also studied in the gas phase (T=400–550 K) and solid state (T=100–300 K). They are compared with previously studied spectra of the light (non-deuterated) dimers in the gas phase, in the solid state and in low-temperature argon matrices (T=12–30 K) in the 4000–400 cm−1 spectral region. It is found that the strong and broad ν(OH) dimer bands have similar shapes, nearly equal values of bandwidth and low-frequency shift, and possess the Hadzi ABC structure irrespective of the type of acid, significant differences of dimerization enthalpies, influence of solvent, the type of H-bonded complexes (cyclic dimers in the gas phase, in solutions, and in inert matrices, and infinite chains in the solid state), and temperature in the range 12–600 K. Isotopic ratio of the first moments of light and deuterated acid bands has been measured. Analysis of the ν(OH/OD) band of hydrogen bonded dimers of phosphinic acids shows that the interaction between the two intermolecular bonds O–HOP in a cyclic complex plays virtually no role in the mechanism of the ν(OH/OD) band formation; the shape of ν(OH/OD) band is controlled mainly by the POOH(D)O fragment; and the band shape of strong hydrogen bonded complexes is formed by a number of vibrational transitions from the ground state to different combination levels in the region 3500–1500 cm−1.  相似文献   

8.
采用强流脉冲离子束(High-intensitypulsedionbeam,HIPIB)烧蚀技术在Si(100)基体上沉积类金刚石(Diamond-likecarbon,DLC)薄膜,衬底温度的变化范围为298~673K.利用Raman光谱和X射线光电子谱(XPS)对DLC薄膜的化学结合状态与衬底温度之间关系进行研究.薄膜XPS的C1s谱的解谱分析得出薄膜中含有sp3C(结合能为285.5eV)和sp2C(结合能为284.7eV)成分,根据解谱结果评价薄膜中sp3C含量.根据XPS分析可知,衬底温度低于473K时,sp3C的含量大约为40%左右;随着沉积薄膜时衬底温度的提高,sp3C的含量降低,由298K时的42.5%降到673K时的8.1%,从573K开始发生sp3C向sp2C转变.Raman光谱表明,随着衬底温度的提高,Raman谱中G峰的峰位靠近石墨峰位,G峰的半峰宽降低,D峰与G峰的强度比ID/IG增大,说明薄膜中的sp3C的含量随衬底温度增加而减少.  相似文献   

9.
The infrared spectra of 3-pentyn-2-ol, CH3CCCH(OH)CH3, have been recorded as a vapour and liquid at ambient temperature, as a solid at 78 K in the 4000–50 cm−1 range and isolated in an argon matrix at ca. 5 K. Infrared spectra of the solid phase at 78 K were obtained before and after annealing to temperatures of 120 and 130 K. The IR spectra of the solid were quite similar to that of the liquid.

Raman spectra of the liquid were recorded at room temperature and at various temperatures between 295 and 153 K. Spectra of an amorphous and annealed solid were recorded at 78 K. In the variable temperature Raman spectra, some bands changed in relative intensity and were interpreted in terms of conformational equilibria between the three possible conformers. Complete assignments were made for all the bands of the most stable conformer in which OH is oriented anti to C1(aMe). From various bands assigned to a second conformer in which OH is oriented anti to Hgem(aH), the conformational enthalpy differences was found to be between 0.4 and 0.8 kJ mol−1. The highest energy conformer with OH anti to C3(aC) was not detected.

Quantum-chemical calculations have been carried out at the MP2 and B3LYP levels with a variety of basis sets. Except for small basis set calculations for which the aH conformer had slightly lower energy, all the calculations revealed that aMe was the low energy conformer. The B3LYP/cc-pVTZ calculations suggested the aMe conformer as more stable by 0.8 and 8.3 kJ mol−1 relative to aH an aC, respectively. Vibrational wavenumbers and infrared and Raman band intensities for two of the three conformers are reported from B3LYP/cc-pVTZ calculations.  相似文献   


10.
Aerosol flame pyrolysis deposition method was applied to deposit the oxide glass electrolyte film and LiCoO2 cathode for thin film type Li-ion secondary battery. The thicknesses of as-deposited porous LiCoO2 and Li2O–B2O3–P2O5 electrolyte film were about 6 μm and 15 μm, respectively. The deposited LiCoO2 was sintered for 2 min at 700 °C to make partially densified cathode layer, and the deposited Li2O–P2O5–B2O3 glass film completely densified by the sintering at 700 °C for 1 h. After solid state sintering process the thicknesses were reduced to approximately 4 μm and 6 μm, respectively. The cathode and electrolyte layers were deposited by continuous deposition process and integrated into a layer by co-sintering. It was demonstrated that Aerosol flame deposition is one of the good candidates for the fabrication of thin film battery.  相似文献   

11.
Infrared spectra (4000–50 cm−1) of the vapor, amorphous and crystalline solids and Raman spectra (3600–10 cm−1) of the liquid with qualitative depolarization data as well as the amorphous and crystalline solids of methylaminothiophosphoryl difluoride, CH3N(H)P(=S)F2, and three deuterated species, CD3N(H)P(=S)F2, CH3N(D)P(=S)F2, and CD3N(D)P(=S)F2, have been recorded. The spectra indicate that in the vapor, liquid and amorphous solid a small amount of a second conformer is present, whereas only one conformer remains in the low temperature crystalline phase. The near-infrared spectra of the vapor confirms the existence of two conformers in the gas phase. Asymmetric top contour simulation of the vapor shows that the trans conformer is the predominant vapor phase conformer. From a temperature study of the Raman spectrum of the liquid the enthalpy difference between the trans and near-cis conformers was determined to be 368±15 cm−1 (4.41±0.2 kJ/mol), with the trans conformer being thermodynamically preferred. Ab Initio calculations with structure optimization using the 6-31G(d) and 6-311+G(d,p) basis sets at the restricted Hartree–Fock (RHF) and/or with full electron correlation by the perturbation method to second order (MP2) support the occurrence of near-trans (5° from trans) and near-cis (20° from cis) conformers. From the RHF/6-31G(d) calculation the near-trans conformer is predicted to be the more stable form by 451 cm−1 (5.35 kJ/mol) and from the MP2/6-311+G(d,p) calculation by 387 cm−1 (4.63 kJ/mol). All of the normal modes of the near-trans rotamer have been assigned based on infrared band contours, depolarization values and group frequencies and the assignment is supported by the normal coordinate calculation utilizing harmonic force constants from the MP2/6-31G(d) ab initio calculations.  相似文献   

12.
The infrared spectra (3500–50 cm−1) of the gas and solid and the Raman spectra (3500–50 cm−1) of the liquid and solid have been recorded for 2-hexyne, CH3–CC–CH2CH2CH3. Variable temperature studies of the infrared spectrum (3500–400 cm−1) of 2-hexyne dissolved in liquid krypton have also been recorded. Utilizing four anti/gauche conformer pairs, the anti(trans) conformer is found to be the lower energy form with an enthalpy difference of 74±8 cm−1 (0.88±0.10 kJ/mol) determined from krypton solutions over the temperature range −105 to −150 °C. At room temperature it is estimated that there is 42% of the anti conformer present. Equilibrium geometries and energies of the two conformers have been determined by ab initio (HF and MP2) and hybrid DFT (B3LYP) methods using a number of basis sets. Only the HF and DFT methods predict the anti conformer as the more stable form as found experimentally. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of sub-band structure for the degenerate methyl vibrations from which values of the Coriolis coupling constants, ζ, have been determined. The results are compared to similar properties of some corresponding molecules.  相似文献   

13.
Interaction between octahedrally coordinated Nd3+ and Yd3+ in Cs2NaNd0,4Yb0,6Cl6 reduces the Nd3+ luminescence lifetime by roughly two orders of magnitude with respect to that found in Cs2NaNdCl6– · – Analysis of low temperature absorption and emission spectra reveals that the nonradiative Nd3+–Yb3+ energy transfer has to be assisted by lattice phonon emission, nevertheless the rate of the transfer is high in the 4–300 K temperature region and attains 5.8×105s-1 at room temperature. A phase transition of Cs2NaNd0,4Yb0,6Cl6 between 12 and 13 K is evidenced by abrupt change of both the spectra and lifetimes of Yb3+. Reduction of Yb3+ lifetime from 5.3 ms to 150 μs is at the transition from low symmetry phase to high symmetry phase is supposed to be associated with a three ion interaction which occurs in ordered lattice and disappears in low temperature disordered structure.  相似文献   

14.
以硝酸铝、正硅酸乙酯(TEOS)和3-三氯锗丙酸为原料, 通过溶胶-凝胶法合成了Al12Si3.75Ge0.25O26莫来石固溶体粉体, 并利用热重-差热分析(TG-DSC)、X射线衍射(XRD)、红外光谱(FT-IR)等技术对陶瓷粉体的形成过程进行了表征. 对其进行还原处理并对产物的光致发光性能进行了研究, 观察到发光峰位于565、613、682、731和777 nm的室温光致发光现象. 比较不同还原温度下制备的样品, 结果发现500 益还原样品的发光强度最强. 通过晶格常数计算并结合XPS研究表明, 在500 ℃还原时已有Ge4+从基体中被还原为Ge0粒子. 拉曼光谱显示, 500 益还原样品中, Ge0主要是以平均粒径约为1.95 nm的团簇形式存在.  相似文献   

15.
FT-IR and Raman spectra of five hydrated alkali borates and five hydrated alkali double borates have been recorded at room temperature in the range 400 to 4000 cm−1, and analyzed. Fundamental vibrational modes have been identified and assignments tentatively made in comparison with the work of Janda and Heller, and Li Jun. The text was submitted by the authors in English.  相似文献   

16.
Fourier Transform Infrared (FTIR), p-polarized grazing angle (GAIR) and Horizontal Attenuated Total Reflectance (HATR) spectra have been recorded of arachidic acid (AA)/1,2-bis(dodecyloxy)-4,5-diaminobenzene (DADB) Y-type alternate LB films deposited on an aluminium plate with 31 layers. It is well known that the frequencies of CH2 stretching bands of a hydrocarbon chain are sensitive to the conformational ordering of the chain. Changes in frequency and intensity can be used to characterize film ordering and preferential molecular packing. The observed peak frequencies and intensities of these bands indicate that the alkyl chains are present in a mostly trans conformation and tilted from the normal direction with respect to the substrate in LB films. The FTIR–GAIR and HATR spectra of 31 layers alternate film show significant changes in the region 1700–1400 cm−1 due to the partial proton transfer between acid and amine head groups. According to the HATR spectrum, the peak at 1731 cm−1 is observed due to a proportion of the carboxylic acid groups forming sideways dimers indicating that if the carboxylic acid groups form sideways dimers, they are less likely to undergo proton transfer with the amino groups.  相似文献   

17.
Ion beam vapor deposition is a new technique to grow Si and SiGe layers on Si substrates at low temperatures. The in situ surface cleaning prior to the deposition is a crucial step in the epitaxial growth of Si and SiGe films and is achieved by Ar ion bombardment with substrates kept at ambient temperature. A high temperature annealing (800 °C) is needed to repair the damage caused by this bombardment. We studied the effects of ion beam energy and the substrate temperature during the in situ cleaning on the quality of the grown films. An ion beam energy of 150–200eV is found to be sufficient to clean the surface for epitaxial growth. While the films deposited on properly cleaned surfaces are epitaxially grown, the inadequately cleaned surface leads to the formation of polycrystalline layers especially at low substrate temperatures.  相似文献   

18.
The infrared (3500–30 cm−1) spectra of gaseous and solid and the Raman (3500–10 cm−1) spectra of liquid with quantitative depolarization ratios and solid 2-chloroethyl silane, ClCH2CH2SiH3, have been recorded. Similar data have been recorded for the Si–d3 isotopomer. These data indicate that two conformers, trans and gauche, are present in the fluid states but only one conformer, trans, is present in the solid. The mid-infrared spectra of the sample dissolved in liquified xenon as a function of temperature (−55 to −100°C) has been recorded. The enthalpy difference between the conformers has been determined to be 181±12 cm−1 (2.17±0.14 kJ/mol) with the trans rotamer the more stable form. From the isolated Si–H frequencies from the Si–d2 isotopomer the ro Si–H distances of 1.484 and 1.483 Å for the trans and 1.481 for the gauche conformers have been obtained. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311+G** from which structural parameters and conformational stabilities have been determined. With all the basis sets the trans form is predicted to be the more stable conformer which is consistent with the experimental results. These results are compared to the corresponding quantities for the carbon analogue.  相似文献   

19.
The fundamental and overtone spectra of the C–H stretching of cyclohexene in the gas phase have been measured using FTIR spectroscopy in the range 2800–11 500 cm−1v=1–4) and intracavity dye laser spectrometry in the range 12 900–17 500 cm−1v=4–7). Up to Δv=6, the spectra show disturbed structure. The transitions observed are mainly interpreted on the basis of a comparative study with the previous experimental and theoretical work relative to 3,3,6,6-d4-cyclohexene. Ab initio calculations of molecular geometries and fundamental vibrational frequencies have also been performed in a molecule-fixed cartesian coordinates to calculate the first derivative of the dipole moment function and of the polarisability tensor in order to reproduce the fundamental infrared and Raman spectra. In the overtone spectra, possibility of Fermi resonances between the methylenic C–H bond stretchings and combination states involving other low-frequency modes is qualitatively discussed.  相似文献   

20.
Raman and FTIR spectra for 2,3,4- and 2,3,6-tri-fluoro-benzonitriles have been recorded in the regions 50–4000 cm−1 and 400–4000 cm−1, respectively. Measurement of depolarization ratios for the Raman lines has also been made. Optimized geometrical parameters, charge distributions and vibrational wavenumbers were calculated using ab initio quantum chemical method. Normal coordinate analysis has also been carried out to help assign the fundamentals of these molecules. Each vibration has been assigned using observed wavenumbers in the IR and Raman spectra and their relative intensities, depolarization ratios of the Raman lines, the calculated frequencies, vector displacements and potential energy distributions (PEDs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号