首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this Letter, we study the equation of circular loops with time-dependent tension in the BTZ black hole background. We obtain various cases where cosmic string loops finally collapse to form black holes. Also, we study effect of the BTZ black hole mass and angular momentum on the evolution of cosmic string loops. We find the critical values of initial radii as a limit for the cosmic string loops collapsing to form black holes.  相似文献   

2.
In this paper we investigate the scattering of massless Dirac wave from several different black hole spacetimes (i.e. the Schwarzschild black hole, the RN extremal black hole, the Schwarzschild de Sitter black hole, and the extremal Schwarzschild de Sitter black hole) which are influenced by the cosmic string, respectively. All these cases show us that the total absorption cross sections oscillate around the geometric-optical limit and decrease with linear mass density μ of the cosmic string. All of the total scattering cross sections exhibit that the main scattering angle becomes narrower for the high partial frequency wave. Due to the influence of cosmic string, the glory peak becomes wider for larger values of linear mass density μ of the cosmic string.  相似文献   

3.
Primordial black hole formation by cosmic string collapses is reconsidered in the case where the winding number of the string is larger than unity. The line energy density of a multiple winding string becomes greater than that of a single winding string so that the probability of black hole formation by string collapse during loop oscillation would be strongly enhanced. Moreover, this probability could be affected by changes in gravity theory due to large extra dimensions based on the brane universe model. In addition, a wider class of strings which are stable compared to conventional cosmic strings can contribute to such a scenario. Although the production of the multiple winding defect is suppressed and its number density should be small, the enhancement of black hole formation by the increased energy density may provide a large number of evaporating black holes in the present universe which gives more stringent constraints on the string model compared to the ordinary string scenario.  相似文献   

4.
In these notes we present a summary of existing ideas about phase transitions of black hole spacetimes in semiclassical gravity and offer some thoughts on three possible scenarios or mechanisms by which these transitions could take place. We begin with a review of the thermodynamics of a black hole system and emphasize that the phase transition is driven by the large entropy of the black hole horizon. Our first theme is illustrated by a quantum atomic black hole system, generalizing to finite-temperature a model originally offered by Bekenstein. In this equilibrium atomic model, the black hole phase transition is realized as the abrupt excitation of a high energy state, suggesting analogies with the study of two-level atoms. Our second theme argues that the black hole system shares similarities with the defect-mediated Kosterlitz–Thouless transition in condensed matter. These similarities suggest that the black hole phase transition may be more fully understood by focusing upon the dynamics of black holes and white holes, the spacetime analogy of vortex and antivortex topological defects. Finally, we compare the black hole phase transition to another transition driven by an (exponentially) increasing density of states, the Hagedorn transition first found in hadron physics in the context of dual models or the old string theory. In modern string theory the Hagedorn transition is linked by the Maldacena conjecture to the Hawking–Page black hole phase transition in Anti-de Sitter (AdS) space, as observed by Witten. Thus, the dynamics of the Hagedorn transition may yield insight into the dynamics of the black hole phase transition. We argue that characteristics of the Hagedorn transition are already contained within the dynamics of classical string systems. Our third theme points to carrying out a full nonperturbative and nonequilibrium analysis of the large N behavior of classical SU(N) gauge theories to understand its Hagadorn transition. By invoking the Maldacena conjecture we can then gain valuable insight into black hole phase transitions in AdS space.  相似文献   

5.
《Nuclear Physics B》1996,481(3):743-757
We investigate the conformal string σ-model corresponding to a general five-dimensional non-extremal black hole solution. In the horizon region the theory reduces to an exactly solvable conformal field theory. We determine the modular invariant spectrum of physical string states, which expresses the Rindler momentum operator in terms of three charges and string oscillators. For black holes with winding and Kaluza-Klein charges, we find that states made with only right-moving excitations have ADM mass equal to the black hole ADM mass, and thus they can be used as sources of the gravitational field. A discussion on statistical entropy is included.  相似文献   

6.
The near-horizon geometry of a large class of extremal and near-extremal black holes in string and M-theory contains three-dimensional asymptotically anti-de Sitter space. Motivated by this structure, we are led naturally to a discrete set of complex frequencies defined in terms of the monodromy at the inner and outer horizons of the black hole. We show that the correspondence principle, whereby the real part of these "nonquasinormal frequencies" is identified with certain fundamental quanta, leads directly to the correct quantum behavior of the near-horizon Virasoro algebra, and thus the black hole entropy. Remarkably, for the rotating black hole in five dimensions we also reproduce the fractionization of conformal weights predicted in string theory.  相似文献   

7.
In this paper we have studied the possibility of the center-of-mass energy of two particles colliding near the horizon of a static charged black hole in string theory. Various cases corresponding to the electric charge and the angular momentum of the particles were considered. The studies were done for the general black hole as well as for the extreme black hole. There were two scenarios where the center-of-mass energy reach very large values if the appropriate properties of the particles are chosen.  相似文献   

8.
We address the question how string compactifications with D‐branes are consistent with the black hole bound, which arises in any theory with number of particle species to which the black holes can evaporate. For the Kaluza‐Klein particles, both longitudinal and transversal to the D‐branes, it is relatively easy to see that the black hole bound is saturated, and the geometric relations can be understood in the language of species‐counting. We next address the question of the black hole evaporation into the higher string states and discover, that contrary to the naive intuition, the exponentially growing number of Regge states does not preclude the existence of semi‐classical black holes of sub‐stringy size. Our analysis indicates that the effective number of string resonances to which such micro black holes evaporate is not exponentially large but is bounded by N = 1/gs2, which suggests the interpretation of the well‐known relation between the Planck and string scales as the saturation of the black hole bound on the species number. In addition, we also discuss some other issues in D‐brane compactifications with a low string scale of order TeV, such as the masses of light moduli fields.  相似文献   

9.
In this paper, we extend Parikh's recent work to two kinds of the black holes whose ADM mass is no longer identical to its mass parameter, each with a topological defect, one being a global monopole black hole and another a cosmic string black hole. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability. From the tunnelling probability we also find a leading correction to the semiclassical emission rate. The results are consistent with an underlying unitary theory.  相似文献   

10.
The existence and stability under linear perturbation of closed timelike curves in the spacetime associated to Schwarzschild black hole pierced by a spinning string are studied. Due to the superposition of the black hole, we find that the spinning string spacetime is deformed in such a way to allow the existence of closed timelike geodesics.  相似文献   

11.
We study the motion of current carrying charged string loops in the Reissner–Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.  相似文献   

12.
In this paper we study the first law of thermodynamics for the (2+1)-dimensional rotating charged BTZ black hole considering a pair of thermodynamical systems constructed with the two horizons of this solution. We show that these two systems are similar to the right and left movers of string theory and that the temperature associated with the black hole is the harmonic mean of the temperatures associated with these two systems.  相似文献   

13.
《Nuclear Physics B》1996,475(3):645-676
We show that polarization-dependent string-string scattering provides new evidence for the identification of the Dabholkar-Harvey (DH) string solution with the heterotic string itself. First, we construct excited versions of the DH solution which carry arbitrary left-moving waves yet are annihilated by half the supersymmetries. These solutions correspond in a natural way to Bogomolny-bound-saturating excitations of the ground state of the heterotic string. When the excited string solutions are compactified to four dimensions, they reduce to Sen's family of extremal black hole solutions of the toroidally compactified heterotic string. We then study the large impact parameter scattering of two such string solutions. We develop methods which go beyond the metric on moduli space approximation and allow us to read off the subleading polarization-dependent scattering amplitudes. We find perfect agreement with heterotic string tree amplitude predictions for the scattering of corresponding string states. Taken together, these results clearly identify the string states responsible for Sen's extremal black hole entropy. We end with a brief discussion of implications for the black hole information problem.  相似文献   

14.
We study the bosonic string in the Schwarzschild-de Sitter black hole, which has a black hole horizon as well as a cosmological horizon. This generalizes the bosonic string in the cold Schwarzschild black hole already studied.  相似文献   

15.
In this paper, we study gravitational lensing of magnetically charged black hole of string theory as a strong field approximation for the supermassive black hole at the center of NGC4486B. We evaluate light deflection angle numerically, from which we obtain magnifications, Einstein rings and observables for the relativistic images. Finally, we explore time delay between relativistic images when they are on the same as well as opposite side of the lens. It is concluded that charge parameter plays a prominent role in the strong gravitational lensing.  相似文献   

16.
17.
We point out that the massive modes of closed superstring theories may play a crucial role in the last stages of black hole evaporation. If the Bekenstein-Hawking entropy describes the true degeneracy of a black hole — implying loss of quantum coherence and the unitary evolution of quantum states-it becomes entropically favorable for an evaporating black hole to make a transition to a state of massive string modes. This in turn may decay into massless modes of the string (radiation) avoiding the naked singularity exposed by black hole evaporation in the semiclassical picture. Alternatively, quantum coherence may be maintained if the entropy of an evaporating black hole is much larger than that given by the Bekenstein-Hawking formula. In that case, however, the transition to massive string modes is unlikely. String theories might thus resolve the difficulty of the naked singularity, but it appears likely that they will still involve loss of quantum coherence.This essay received the first award from the Gravity Research Foundation for the year 1986 — Ed.  相似文献   

18.
Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux.  相似文献   

19.
20.
In this paper we discuss the black hole–string transition of the small Schwarzschild black hole of AdS 5×S5 using the AdS/CFT correspondence at finite temperature. The finite temperature gauge theory effective action, at weak and strong coupling, can be expressed entirely in terms of constant Polyakov lines which are SU(N) matrices. In showing this we have taken into account that there are no Nambu–Goldstone modes associated with the fact that the 10-dimensional black hole solution sits at a point in S5. We show that the phase of the gauge theory in which the eigenvalue spectrum has a gap corresponds to supergravity saddle points in the bulk theory. We identify the third order N=∞ phase transition with the black hole–string transition. This singularity can be resolved using a double scaling limit in the transition region where the large N expansion is organized in terms of powers of N-2/3. The N=∞ transition now becomes a smooth crossover in terms of a renormalized string coupling constant, reflecting the physics of large but finite N. Multiply wound Polyakov lines condense in the crossover region. We also discuss the implications of our results for the resolution of the singularity of the lorenztian section of the small Schwarzschild black hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号