首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma flow in a linearly widening, ideally sectioned, short-circuited magnetohydrodynamic (MHD) channel is studied. MHD flows are classified into two types: continuous flows and flows with a compressional MHD shock in plasmas that are stable and unstable against the onset of ionization instability. Specific features in the evolution of a stationary compression MHD shock are investigated, and its position as a function of the Stewart number is determined. It is found that, in a plasma flow in which ionization instability develops, a compression MHD shock arises at lower values of the MHD interaction parameter than in a stable plasma flow. An unidentified type of instability of MHD discontinuities is revealed.  相似文献   

2.
The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested.  相似文献   

3.
Generalized equations are derived that describe the linear stage of the resistive firehose instability of a relativistic electron beam whose radius and current change along the pulse. Such factors as reverse current, the perturbations of the plasma channel, and the evolution of the plasma conductivity due to impact ionization, avalanche ionization, and recombination are taken into account.  相似文献   

4.
We study experimentally the effect of ionization self-channeling of waves at the whistler frequencies in a nonuniform magnetic field. It is shown that the formed plasma nonuniformity localizes the radiation from a short high-frequency source inside a discharge channel stretched along an external magnetic field. We found a possibility to control the parameters of the formed plasma-wave channel as well as the dispersion characteristics and structure of wave fields in wide limits by varying the magnetic field in a specified spatial region. We propose a method for the formation of a plasma resonator and test this method in the laboratory experiment. The spatial plasma and field distributions in this resonator are similar to those along a geomagnetic field tube of the magnetospheric resonator. We reveal the plasma instability in such a resonator in the vicinity of the frequency of electron bounce oscillations between magnetic mirrors.  相似文献   

5.
报道了放电引发的非链式HF(DF)激光器中的激活介质由电子碰撞负离子分离引起的电离非稳定性。这种非稳性出现在电极空间分离、脉冲CO2激光加热的基于sF6的混合气体的大体积放电中。实验研究了自引发体放电过程中由激光加热引起的放电等离子体的自组织现象以及由此在放电间隙的大部分区域形成的准周期等离子体结构。重点分析了等离子体结构随气体温度和注入能量的变化,讨论了等离子体自组织对电子碰撞分离不稳定性所产生的影响,解释了混合气体中由于电子碰撞使负离子消失导致的单等离子体通道移动的产生机理。  相似文献   

6.
The plasma found in a magnetohydrodynamic (MHD) generator is discussed. An MHD generator is an expansion engine. It delivers electric rather than mechanical power and there are virtually no upper limits to the temperature it can tolerate, the rapidity of its response, or the power a single unit can be designed to deliver. The behavior of the plasma is uncomplicated compared to that encountered in some other devices, and yet complex, because of the precision with which one needs to know it. The topics included are: generator configurations; electron density; electron mobility; mixture rules; the Hall effect; uniformity; two-temperature plasma; ionization growth at a channel inlet; ionization instability; high enthalpy extraction experiments; segmenting; electrode voltage drop; arcs and electrodes; electrical effects of slag; current control; and waves  相似文献   

7.
采用纳秒脉冲电源,在静止空气条件下,开展了不同气压、放电距离和电压条件下的大体积纳秒脉冲放电实验研究.研究表明,当长度固定为200mm时,气压为250Pa时,随着电压的增大,放电区域从圆锥电极附近扩展到整个通道.当电压为12kV时,放电布满整个通道;随气压升高,初始放电电压增大.实验中发现在电压升高到一定程度时纳秒脉冲电离出现不稳定性,表现在气压相对较低时等离子体出现径向波动,气压相对较高时非平衡等离子体放电向电弧放电转变.分析认为,为了实现大体积均匀放电等离子体的产生,阻止放电不稳定性发生,应该采用上升沿时间更短,脉宽更小,电压更高的纳秒脉冲电源.  相似文献   

8.
The formation and evolution of the ionization nonuniformities from initial disturbances of finite amplitude in the nonequilibrium Ar-Cs plasma in a disk magnetohydrodynamic (MHD) generator is studied by the numerical simulation, The simulations are carried out in the wide interval of electron temperatures corresponding to the region at which the seed partially ionizes, the region of the linear plasma stability at the fully ionized seed, and the region of the instability corresponding to the partial ionization of Ar at high electron temperatures. Initial disturbances of finite amplitude in electron temperature and density are introduced at the time t=0 into the homogeneous plasma distribution, and the critical amplitudes determining the development of the instability are calculated. The initial disturbances are constructed using random functions with different spatial scales, The results are compared with the calculation of the critical amplitudes from the nonlinear theory of the plane ionization waves, It is found that at electron temperatures lower than 5500 K, the temperature dependence of the critical amplitudes and the structure of the nonlinear waves agree well with the nonlinear theory, In the electron temperature region corresponding to the partial ionization of the noble gas (Te>5500 K), the finite ionization rate of argon atoms is essential for analysis of the instability, In this region the margin of the plasma stability is wider than it is predicted by the nonlinear theory, The nonuniformity in the argon ion number density plays the dominating role in the instability development at high electron temperatures (Te>5500 K) in comparison with the nonuniformity in Te in the initial disturbances,  相似文献   

9.
The Weibel instability increment is analytically derived for plasma produced at the barrier-suppression ionization of atoms and atomic ions by a superintense femtosecond laser pulse. The cases of linear and circular polarization are considered. Relativistic effects are discussed. It is found that the instability increment is larger for the circular polarization than for the linear polarization. This increment can attain the plasma frequency. Barrier-suppression ionization decreases the increment compared with the case of tunneling ionization. Relativistic effects also decrease the value of the increment. Estimates of the produced maximum quasistatic magnetic field are given.  相似文献   

10.
The results of simulation of the current channel microstructure formation in atmospheric nano- second discharges in a uniform electric field due to the development of instability of the ionization process in the avalanche stage followed by cycling breakdowns of the avalanche are considered. It is shown that the enhancement of the electric field at the ionization front due to the intrinsic field of the avalanche leads to the contraction of the path length between consecutive avalanche breakups; after several breakups, the ionized gas passes to the plasma state. The effect of small electric field perturbations on the dynamics of microstructure formation is investigated; as a result, the possibility of “induced” avalanche breakup at the instant of action of perturbations is established.  相似文献   

11.
Influence of ionization is studied on two stream instability (TSI) in an inhomogeneous plasma in the presence of obliquely applied magnetic field. In addition to the usual TSI, a new type of instability is found to occur in this system, which is driven by the magnetic field and survives for relatively longer wavelength of oscillations. The growth rates of both the instabilities are enhanced by the magnetic field but their magnitudes attain a minimum value at certain angles of the wave propagation depending upon the wavelength of oscillations. At a critical value of ionization rate there is a sudden fall in the growth of both the instabilities, the reason of which is understood as the Landau damping. A further enhancement in the ionization suppresses the usual TSI whereas the magnetic field‐driven instability attains much lower growth. This new type of instability grows faster in the plasma having heavier ions, but shows a weak dependence on the charge of the ions. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Effects accompanying the interaction of a flow of preionized inert gas with a magnetic field are studied: selective electron heating, the development of nonequilibrium ionization, and the onset of the ionization instability. Local and average densities and temperatures of the electrons are measured and the average ionization rate is determined. It is found that the average electron density increases as the magnetic induction is raised, in both stable and ionization unstable plasmas. The difference in the rates at which ionization develops in these two states is revealed. The mechanism for the coupling between the average ionization rate in an ionization unstable plasma and the spatial-temporal characteristics of the plasma inhomogeneities is established. Zh. Tekh. Fiz. 69, 56–61 (November 1999)  相似文献   

13.
An instability is triggered in a weakly magnetized discharge plasma by the application of a positive voltage step to a planar collector immersed into the plasma column with its surface perpendicular to the magnetic field lines. Time developement of the plasma density after the application of the pulse is measured by a Langmuir probe. Radial and axial velocity of the plasma density perturbation are measured. Radial velocity is consistent with the increase of the plasma potential in the current channel. Axial velocity is very high. It is interpreted as phase velocity of radial quasiperiodic motion of the plasma in and out of the current channel. Response time of the collector current to the applied voltage step is measured versus different parameters. Experimental results are in agreement with a qualitative model presented in previous work [1] where the observed instability is modeled as a two dimensional potential relaxation instability (PRI). Minor improvements of the previous model are proposed. A rarefaction pulse that moves towards the collector is found as the initial stage of the instability.  相似文献   

14.
A low frequency instability has been observed using various electrostatic probes in a low-pressure expanding helicon plasma. The instability is associated with the presence of a current-free double layer (DL). The frequency of the instability increases linearly with the potential drop of the DL, and simultaneous measurements show their coexistence. A theory for an upstream ionization instability has been developed, which shows that electrons accelerated through the DL increase the ionization upstream and are responsible for the observed instability. The theory is in good agreement with the experimental results.  相似文献   

15.
The force of interaction between a relativistic electron beam deflected by resistive hose instability and the eddy current induced in a tubular plasma channel of finite conductivity is computed. Dependences of the force on channel ohmic conductivity and current rise time in a beam pulse are studied. For a beam propagating through a perfectly conducting waveguide under the ion-focused regime, the interaction of the beam with the ion-channel electrostatic image on the waveguide wall is studied for the case when the beam and the channel are deflected from the waveguide axis as a result of ion hose instability. The dependence of the force on both deflection amplitudes is ascertained for the nonlinear phase of instability. It is demonstrated that the force under study may become comparable to the beam-channel interaction force if the deflections are large.  相似文献   

16.
In an magnetohydrodynamic (MHD) generator using a frozen inert gas plasma (FIP), the availability of a frozen argon plasma, the influence of plasma uniformity at the generator inlet on the performance, and the feasibility of a large-scale generator are numerically examined by /spl gamma/-/spl theta/ two-dimensional simulation. The FIP is produced by pre-ionizing inert gas without an alkali metal seed at the generator inlet, then the ionization degree of the plasma is kept almost constant in the whole of the channel because of considerable slow recombination of the inert gas just like frozen reaction plasma. It is found that not only helium, but also argon frozen plasma MHD generation is realized, although highly accurate control of inlet ionization degree is necessary for argon. It is important to reduce the nonuniformity of plasma properties at the generator inlet in order to raise the maximum enthalpy extraction ratio. Even for the large-scale generator with 1000-MW thermal input, the ionization degree is kept almost constant in the whole of the channel and the high performance is obtainable. This result is extremely attractive for the FIP MHD generator.  相似文献   

17.
The microstructure of a nanosecond spark discharge in atmospheric-pressure air in uniform and highly nonuniform electric fields is investigated. It is found that an 0.1-to 0.4-mm spark channel consists of a large number (from 100 to 1000) of 5-to 10-μm-diameter microchannels distributed nearly uniformly over the channel cross section. The current amplitude in the spark is 1.5–3 kA, and the current density in a microchannel is 107 A/cm2. It is shown that the formation of the microstructure cannot be attributed to ionization-heating instability. The instability of the ionization wave front is suggested as a mechanism for the microstructure formation.  相似文献   

18.
Using an ionization sensor, it was found that weakly ionized plasma with an ionization degree larger than 10?6 is formed under exposure to UV radiation of a high-current pulsed electric discharge in gas (air, nitrogen, xenon, and krypton) at atmospheric pressure at a distance of ~1.2–2.5 cm from the discharge boundary. It was shown that the structure of such discharge includes, in addition to the discharge channel, a dense shell and a shock wave, also a region of weakly ionized and excited gas before the shock wave front. The mechanism of discharge expansion in dense gas is ionization and heating of gas involved in the discharge due to absorption of the UV energy flux from the discharge channel and the flux of the thermal energy transferred from the discharge channel to the discharge shell due to electron thermal conductivity.  相似文献   

19.
Results are presented from experimental studies of the time evolution of the plasma channel produced by a high-current electron beam (with an electron energy of E e = 1.1 MeV, a beam current of I b = 24 kA, and a pulse duration of t = 60 ns) in helium, nitrogen, neon, air, argon, krypton, xenon, and humid air (air: H2O) at pressures from 1 to 760 Torr. It is shown that, in gases characterized by a small ratio of the collision frequency to the gas ionization rate u i , the electron beam produces a broad high-conductivity plasma channel, such that R b/R p < 1, where R b and R p are the beam and channel radii, respectively. As a result, large-scale resistive hose instability is suppressed.  相似文献   

20.
Results are presented from theoretical studies and computer simulations of the resonant excitation of Langmuir waves during the ionization of a homogeneous gas by high-intensity laser radiation. Two mechanisms for the formation of nonuniform resonant structures in the discharge are examined: plasma-resonance ionization instability, resulting in the density modulation along the electric field vector, and gas breakdown in the field of a transversely inhomogeneous laser beam (a Bessel beam produced by an axicon lens). In both cases, the transition of the plasma density through the critical value is accompanied by the generation of intense Langmuir waves, the formation of fast ionization fronts, and the appearance of long-lived quasi-turbulent states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号