首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The light fluence distributions of 632.8 nm light incident on the exposed surface of normal rat brain in vivo have been measured using an interstitial, stereotactically-mounted optical fiber detector with isotropic response. The dependence of the relative fluence rate on depth and the spatial distribution of fluence were compared for incident beam diameters of 3 and 5 mm. The fluence rate at depth of 1-6 mm along the optical axis within the brain tissue was approximately 70% greater for a 5 mm diameter beam than for a 3 mm beam, at the same incident fluence rate, although the plots of the relative fluence rate vs depth were parallel over the depth range 1-6 mm. The depths of necrosis resulting from photodynamic treatment of brain tissue using the photosensitizer Photofrin and irradiation by 632 nm light with 3 and 5 mm incident beams were also measured. The observed difference in necrosis depths was consistent with the measured difference in fluence. The importance of beam size in photodynamic treatment with small diameter incident light fields is discussed.  相似文献   

2.
Photosensitizers 13,15-[N-(3-hydroxypropyl)]cycloimide chlorin p6 (HPC) and 13,15-(N-methoxy)cycloimide chlorin p6 methyl ester (MMC) absorb at 711 nm and possess high photoinduced cytotoxicity in vitro. Here we report, that photodynamic therapy with HPC and MMC provide considerable antitumor effect in mice bearing subcutaneous P338 lymphoma. The highest antitumor effect was achieved at a dose of 4 micromol/kg when 1.5 h delay between dye injection and light irradiation (drug-light interval) was used. According to the confocal spectral imaging studies of tissue sections this drug-light interval corresponds to a maximum of tumor accumulation of MMC and HPC (tumor to skin accumulation ratio is 8-10). Short (15 min) drug-light interval can be used for efficient vasculature-targeted photodynamic therapy with HPC at a dose of 1 micromol/kg, whereas MMC is ineffective at the short drug-light interval. Relationships between the features of tissue distribution and efficacy of photodynamic therapy at different drug-light intervals are discussed for HPC and MMC.  相似文献   

3.
Wavelength effects in photodynamic therapy (PDT) with hypericin (HY) were examined in a C26 colon carcinoma model both in vitro and in vivo. Irradiation of HY-sensitized cells in vitro with either 550 or 590 nm caused the loss of cell viability in a drug- and light-dose-dependent manner. The calculated ratio of HY-based PDT (HY-PDT) efficiencies at these two wavelengths was found to correlate with the numerical ratio of absorbed photons at each wavelength. In vivo irradiation of C26-derived tumors, 6 h after intraperitoneal administration of HY (5 mg/kg), caused extensive vascular damage and tumor necrosis. The depth of tumor necrosis (d) was more pronounced at 590 than at 550 nm and increased when the light dose was raised from 60 to 120 J/cm2. The maximal depths of tumor necrosis (at 120 J/cm2) were 7.5+/-1.5 mm at 550 nm and 9.9+/-0.8 mm at 590 nm. Both values are rather high in view of the limited penetration of green-yellow light into the tissue. Moreover, the depth ratio, d590/d550 = 1.3 (P < 0.001), is smaller than expected considering the 2.2-fold lower HY absorbance and the 1.7-fold lower tissue penetration of radiation at 550 than at 590 nm. This finding indicates that in vivo the depth at which HY-PDT elicits tumor necrosis is not only determined by photophysical considerations (light penetration, number of absorbed photons) but is also influenced significantly by other mechanisms such as vascular effects. Therefore, despite the relatively short-wavelength peaks of absorption, our observations suggest that HY is an effective photodynamic agent that can be useful in the treatment of tumors with depths in the range of 1 cm.  相似文献   

4.
The binding of chlorin p6, a photosensitizer having basic tetrapyrrole structure, to bovine serum albumin (BSA) and oxidation of the protein following photodynamic treatment is studied. The Stern-Volmer plot indicates that binding of chlorin p6 to BSA was of single class. Binding parameters, binding association constant and number of binding sites, were found to be 1.62+/-0.27 x 10(5)M(-1) and 1.086+/-.019, respectively. Photodynamic oxidation of protein was studied by (i) loss of intrinsic fluorescence of protein, (ii) protein carbonyl formation, (iii) protein hydroperoxide (iv) formation of TCA soluble amino groups and (v) SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Intrinsic protein fluorescence was observed to decrease almost linearly as a function of irradiation time at a fixed concentration of chlorin p6 and with increasing concentration of chlorin p6 at fixed time of irradiation. Protein carbonyl and hydroperoxide formation was found to increase with increasing photodynamic treatment. No significant increase in 5% TCA soluble amino groups was observed. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) reveals that photodynamic treatment of BSA in presence of chlorin p6, rose bengal and riboflavin causes non-specific fragmentation of protein. Photodynamic carbonyl formation by chlorin p6 was not inhibited by sodium formate (100 mM) or mannitol (25 mM) but was significantly inhibited by sodium azide (2 mM). Protein carbonyl formation increased almost 90% when H2O was replaced by D2O. The results show that chlorin p6 induced photodynamic oxidation of BSA was mainly mediated by singlet oxygen.  相似文献   

5.
One of the 'second generation' photosensitizing agents is N-acetyl chlorin e6 (NPe6). This product has a strong absorbance band at 665 nm, permitting treatment at a greater depth of tumor than earlier agents based on porphyrin structures. We examined the effects of fractionated drug administration on photodynamic efficacy. Prior studies had shown that it is the level of NPe6 in the circulation that predicts for photodynamic efficacy, indicating vascular shut-down to be the predominant mode of tumor control. Although pharmacokinetic studies revealed that >99% of NPe6 was lost from the circulation, it appears that a fractionated dosage protocol can promote photodamage to neoplastic tissue in vivo. This study also indicated the potential utility of an implantable micro array for tumor irradiation.  相似文献   

6.
Effect of varying extracellular pH on mode of cell death induced by photodynamic action of chlorin p6 was investigated in human colon carcinoma (Colo-205) cells. At an extracellular pH of 7.4, compared to cells treated with chlorin p6 in dark, the photodynamically treated cells showed reduction in mitochondrial membrane potential, an increase in ADP/ATP ratio (1:2) and a large percentage of cells with chromatin condensation. In contrast, when photodynamic treatment and post irradiation incubation was carried out in acidic medium (pH 6.5), total loss of mitochondrial membrane potential, a marked increase in ADP/ATP ratio (1:33) and increased damage to plasma membrane were observed. Further, cells subjected to photodynamic treatment in a medium of pH 7.4 showed twofold increase in caspase-3 activity as compared to photodynamic treatment at pH 6.5. These results suggest that chlorin p6 mediated photodynamic action induces apoptotic cell death when extracellular pH is 7.4 whereas necrosis is more predominant under condition when extracellular pH is 6.5.  相似文献   

7.
The relationships between the rate of post-irradiated photohaemolysis sensitized by chlorin e6 and parameters such as the light fluence (time of irradiation) and sensitizer concentration were studied. On the basis of the single-parametric approach proposed by Valenzeno and Pooler, it was found that the haemolytic rate varies with the square of both the light fluence and the sensitizer concentration. Thus it can be concluded that, in a single erythrocyte lesion, two chlorin e6 molecules participate, each absorbing one photon. The possibility of suppression of post-irradiation haemolysis was also studied using the lipophilic antioxidant, butylated hydroxytoluene (BHT), and scavengers of 1O2, O2.- and HO. radicals. It was found that BHT inhibits, to a considerable extent, the post-irradiation lysis of cells, by about a factor of 2.5 at a BHT concentration of 9 microM. The addition to the medium of NaN3 (a scavenger of 1O2), superoxide dismutase (a scavenger of O2.- radicals), ethanol and D-mannitol (scavengers of HO. radicals), when irradiation was interrupted, did not produce a marked influence on the kinetics of subsequent haemolysis. On the basis of the results obtained, the nature of erythrocyte targets, which are crucial for the photodynamic effect of chlorin e6, is discussed.  相似文献   

8.
Abstract— The authors performed photodynamic therapy (PDT), avoiding any hyperthermic effects, using a newly developed diode laser and photosensitizer, mono-L-aspar-tyl chlorin e6 (NPe6), of Meth-A fibrosarcoma implanted in mice and achieved tumor therapeutic benefit. The photodynamic light treatment was performed 5 h following the photosensitizer administration. With 5.0 mg/kg NPe6 and light doses of 50, 100, 150 and 200 J/cm2, the tumor cure rates were 20, 50, 70 and 90%, respectively. With 100 J/cm2 laser exposure and NPe6 doses of 1.25, 2.5, 5.0, 7.5 and 10.0 mg/kg, the tumor cure rates were 0, 20, 50, 70 and 90%, respectively. A charge-coupled device (CCD) camera system was employed to measure the NPe6 fluorescence intensity correlating with the residual amount of the photosensitizer at deferent depth from the tumor surface. The ratios of the NPe6 fluorescence intensity at 3 mm from the tumor surface following 50, 100, 150 and 200 J/cm2 laser exposure to no laser exposure were 0.73, 0.36, 0.22 and 0.16, respectively. With samples sectioned at 1 mm depth, after 50 J/cm2 and the same photosensitizer dose (5 mg/kg) this ratio was 0.19. These results suggest that a certain increase in the tumor tissue level of NPe6 and a certain increase of laser light dose reaching deeper layers of tumor caused an increase in percent cure. In addition, the effectiveness of PDT depends on the total laser dose reaching deeper layers of tumors. Furthermore, the effectiveness of PDT tends to correlate with the amount of NPe6 photobleaching by PDT.  相似文献   

9.
It has been proposed that the construction of a photosensitizer-polymer conjugate would lead to an increased selective retention of the drug in tumor tissue resulting in an enhancement of selective tumor destruction by light in photodynamic therapy. In this study the kinetics of a tetra-pegylated derivative of meta-tetra(hydroxyphenyl)chlorin (mTHPC-PEG) were compared with those of native meta-tetra(hydroxyphenyl)chlorin (mTHPC) in a rat liver tumor model. In addition, the time course of bioactivity of both drugs was studied in normal liver tissue. Pegylation of mTHPC resulted in a two-fold increase in the plasma half-life time, a five-fold decrease in liver uptake and an increase in the tumor selectivity at early time intervals after drug administration. However, although mTHPC concentrations in liver decrease rapidly with time, mTHPC-PEG liver concentrations increased as a function of time. This led to a loss of tumor selectivity at all but the earliest time points, whereas with mTHPC tumor selectivity increased with time. For both drugs the time course of bioactivity in the liver parallels drug concentration levels with extensive necrosis after irradiation of mTHPC-PEG-sensitized liver tissue up to drug-light intervals of 120 h. It is concluded that on balance mTHPC-PEG does not appear to show any benefits over native mTHPC for the treatment of liver tumors, as normal liver tissue accumulates the compound. However, pegylation is a potentially promising strategy with an increase in tumor selectivity and reduced liver uptake if accumulation in the liver can be prevented.  相似文献   

10.
Evaluations of the efficiency of a new formulation of chlorin consisting of a complex of trisodium salt chlorin e6 (Ce6) and polyvinylpyrrolidone (PVP) in photodynamic therapy (PDT) and fluorescence diagnosis was performed on poorly differentiated human bladder carcinoma murine model with the following specific aims: (i) to qualitatively evaluate the fluorescence accumulation in human bladder tumor, (ii) to determine fluorescence distribution of Ce6-PVP using the tissue extraction technique and fluorescence imaging technique, (iii) to compare the fluorescence distribution of Ce6, Ce6-PVP and Photofrin in skin of nude mice, and (iv) to investigate phototoxicity caused by different parameters (drug-light interval, drug dose, irradiation fluence rate and total light fluence) in PDT. The fluorescence of the Ce6-PVP formulation was determined either by fluorescence imaging measurements or by chemical extraction from the tissues displaying similar trends of distribution. Our results demonstrated that the Ce6-PVP formulation possesses less in vivo phototoxic effect compared to Ce6 alone. The phototoxicity revealed a strong dependence on the drug and light dosimetry as well as on the drug-light interval. In PDT, the Ce6-PVP compound was most toxic at the 1h drug-light interval at 200J/cm(2), while Ce6 alone was most toxic at a light dose of more that 50J/cm(2) at the 1 and 3h drug-light interval. We also confirmed that Ce6-PVP has a faster clearance compared to Ce6 alone or Photofrin. This eliminates the need for long-term photosensitivity precautions. In conclusion, the Ce6-PVP formulation seems to be a promising photosensitizer for fluorescence imaging as well as for photodynamic treatment.  相似文献   

11.
The response of normal brain to photodynamic therapy (PDT) was investigated in 62 Fisher rats. The animals were injected i.p. with Photofrin II (12.5 mg/kg). Forty-eight hours following injection, an area of dura 5 mm in diameter over the frontal cortex was photoactivated with red light (632 +/- 2 nm) at 100 mW cm-2, with no contributing thermal increases, at optical energy doses ranging from 1-140 J cm-2 from an argon-pumped dye laser. Appropriate controls were also prepared. Brain tissue samples for histological analysis were taken 24 h following PDT treatment. Maximum lesion depth perpendicular to the pial brain surface, was measured using an eyepiece micrometer. Lesions of increasing depth were generated as the incident optical energy dose was increased. Fitting the depth of necrosis to a natural log dependence of incident optical dose yielded a slope of 0.83 mm/ln J cm-2 (r2 = 0.99). The intercept of 1.47 J cm-2 indicated the energy dose below which no normal tissue damage would occur at the incident laser intensity of 100 mW cm-2. The smallest lesions consisted almost exclusively of isolated neuronal injury and neuropil vacuolation, suggestive of an early ischemic lesion. Damage at the upper energy levels (35-140 J cm-2) consisted of complete coagulative necrosis identical to that induced by an arterial occlusion. The existence of viable tissue alongside neurons in various stages of necrosis at low energy levels (less than 35 J cm-2) is suggestive of reversible injury and possibly clinically relevant treatment levels.  相似文献   

12.
This paper describes the photodynamic characteristics of the new near-infrared photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl)bacteriochlorin (mTHPBC or SQN400) in normal rat and mouse tissues. A rat liver model of photodynamic tissue necrosis was used to determine the in vivo action spectrum and the dose-response relationships of tissue destruction with drug and light doses. The effect of varying the light irradiance and the time interval between drug administration and light irradiation on the biological response was also measured in the rat liver model. Photobleaching of mTHPBC was measured and compared with that of its chlorine analog (mTHPC) in normal mouse skin and an implanted mouse colorectal tumor. The optimum wavelength for biological activation of mTHPBC in rat liver was 739 nm. mTHPBC was found to have a marked drug-dose threshold of around 0.6 mg kg-1 when liver tissue was irradiated 48 h after drug administration. Below this administered drug dose, irradiation, even at very high light doses, did not cause liver necrosis. At administered doses above the photodynamic threshold the effect of mTHPBC-PDT was directly proportional to the product of the drug and light doses. No difference in the extent of liver necrosis produced by mTHPBC was found on varying the light irradiance from 10 to 100 mW cm-2. The extent of liver necrosis was greatest when tissue was irradiated shortly after mTHPBC administration and necrosis was absent when irradiation was performed 72 h or later after drug administration, suggesting that the drug was rapidly cleared from the liver. In vivo photobleaching experiments in mice showed that the rate of bleaching of mTHPBC was approximately 20 times greater than that of mTHPC. It is argued that this greater rate of bleaching accounts for the higher photodynamic threshold and this could be exploited to enhance selective destruction of tissues which accumulate the photosensitizer.  相似文献   

13.
LOCALIZATION OF MONO-L-ASPARTYL CHLORIN e6 (NPe6) IN MOUSE TISSUES   总被引:1,自引:0,他引:1  
Abstract It is known that HpD is retained longer by malignant tissue than normal tissue and is therefore a useful material for photodynamic therapy (PDT). Currently, vigorous research is being conducted throughout the world to discover a new material which can have greater cancer cell affinity than hematoporphyrin derivative (HpD) and will be used effectively for PDT. Investigation has been conducted to determine the spectral characteristics and cancer cell affinity of NPe6, a recently developed material.
Structurally, a double bond on the D-ring of the porphyrin ring of mono-L-aspartyl chlorin e6 (NPe6) has been reduced, thereby changing its spectral properties from that of HpD. This difference accounts for the stronger absorption bands in wavelengths longer than those of HpD. Furthermore, NPe6 in tumor showed stronger absorption at 660 nm than HpD. Absorption by hemoglobin (Hb) in the blood occurs at wavelengths in the range 500-600 nm, thereby lowering light transmittance. A compound which has a strong absorption band at wavelengths longer than 600 nm and consequently is not affected by Hb will naturally be activated by light at a greater depth in tissue than compounds which do not share this characteristic. The localization of NPe6 in sarcoma and various internal organs was examined with an endoscopic spectrophotometer using an excimer dye laser. After 72 h i.v. NPe6 injection, the results indicate that NPe6 has 10 times greater uptake in malignant tissue cells than in normal organs. Based on the above observations, it was concluded that NPe6 could be effective for PDT if toxicity is low and that this compound has a high malignant tissue affinity.  相似文献   

14.
The use of ionizing radiation for tumor treatment represents a well established therapeutic modality. The efficiency and selectivity of radiotherapeutic protocols can be often enhanced by the addition of specific chemical compounds that optimise the response of the tumor to the incident radiation as compared with peritumoral tissue districts. The results of this study showed that Photofrin, a porphyrin derivative which is presently used as a tumor-photosensitizing agent in photodynamic therapy (PDT), can also act as an efficient tumor radiosensitizer. To test this possibility, we used nude mice subcutaneously implanted with human bladder cancer RT4. The mice were injected with different porphyrin-type photosensitizing agents, including Photofrin, 5-aminolevulinic acid, chlorin e(6), haematoporphyrin, protoporphyrin, Zn-tetrasulphophtalocyanine, and irradiated with 5 and 15 Gy using a Siemens X-ray device. Even though all the porphyrins accumulated in significant amounts in the neoplastic lesion, only Photofrin significantly improved the response of the tumor to irradiation by increasing the doubling time of the tumor volume from 6.2 days in the untreated control group to 10.9 days in the 5 and 15 Gy-irradiated groups. The tumor response was maximal with injected Photofrin doses of 7.5 mg/kg, and was not further enhanced by injection of higher doses. Our hypothesis is, that the radiosensitizing effect of Photofrin seems to be due to some oligomeric constituents which could specifically react with radiogenerated-radicals thereby amplifying the effect of the X-ray radiation.  相似文献   

15.
Irradiation of B16 pigmented melanoma subcutaneously transplanted in C57 mice with a single 650 mj pulse (10 ns) of 1064 nm light from a Q-switched Nd: YAG laser caused instantaneous bleaching of the pigmented tissue. Visual and histological examination of the resulting gray-colored tumor revealed the breakdown of melanosomes with no detectable alteration of the normal and tumor-overlying skin. Histological examination of the irradiated tumor showed some degree of vascular damage; the depth of the photodamage was not affected by the successive delivery of three consecutive light pulses. The bleached tumor grew at a modestly slower rate but the high-peak-power (HPP) laser treatment did not affect the tumor concentration of a photodynamic sensitizer Si(IV)-naphthalocyanine (isoBO-SiNc) intravenously injected 24 h before Nd : YAG irradiation. Treatment of the B16 pigmented melanoma by photodynamic therapy (PDT: 1 mg/kg isoBO-SiNc, 300 mW/cm2, 520 J/cm2) from a 774 nm diode laser immediately after the 1064 nm irradiation resulted in a 16 day delay of tumor regrowth, which was markedly longer than the delay (ca 6 days) obtained after PDT under identical conditions without the preirradia-tion. Thus, pretreatment of pigmented tumors with HPP 1064 nm light appears to enhance their susceptibility to conventional PDT. The tumor response was further enhanced by repeating the combined HPP/PDT treatment at an interval of 10 days (regrowth delay: 27 days), as well as by applying hyperthermia immediately after HPP/PDT (regrowth delay: ca 34 days).  相似文献   

16.
Standard in vitro analyses determining the activity of different compounds included in the chemotherapy of colon cancer are currently insufficient. New ideas, such as photodynamic therapy (PDT), may bring tangible benefits. The aim of this study was to show that the biological activity of selected free-base and manganese (III) metallated porphyrins differs in the limitation of colon cancer cell growth in vitro. White light irradiation was also hypothesized to initiate a photodynamic effect on tested porphyrins. Manganese porphyrin (>1 μM) significantly decreased the viability of the colon tumor and normal colon epithelial cells, both in light/lack of light conditions, while decreasing a free-base porphyrin after only 3 min of white light irradiation. Both porphyrins interacted with cytostatics in an antagonistic manner. The manganese porphyrin mainly induced apoptosis and necrosis in the tumor, and apoptosis in the normal cells, regardless of light exposure conditions. The free-base porphyrin conducted mainly apoptosis and autophagy. Normal and tumor cells released low levels of IL-1β and IL-10. Tumor cells released a low level of IL-6. Light conditions and porphyrins were influenced at the cytokine level. Tested manganese (III) metallated and free-base porphyrins differ in their activity against human colon cancer cells. The first showed no photodynamic, but a toxic activity, whereas the second expressed high photodynamic action. White light use may induce a photodynamic effect associated with porphyrins.  相似文献   

17.
Six sulfonated metallophthalocyanines, chelated with either aluminum or zinc and sulfonated to different degrees, were studied in vivo for their photodynamic activity in a rat skin-fold chamber model. The chamber, located on the back of female WAG/Rij rats, contained a syngeneic mammary carcinoma implanted into a layer of subcutaneous tissue. Twenty-four hours after intravenous administration of 2.5 μmol/kg of one of the dyes, the chambers received a treatment light dose of 600 J/cm2 with monochromatic light of 675 nm at a power density of 100 mW/ cm2. During light delivery and up to a period of 7 days after treatment, vascular effects of tumor and normal tissue were scored. Tumor cell viability was determined by histology and by reimplantation of the chamber contents into the skin of the same animal, either 2 h after treatment or after the 7 day observation period. Vascular effects of both tumor and subcutaneous tissue were strongest with dyes with the lowest degree of sulfonation and decreased with increasing degree of sulfonation. Tumor regrowth did not occur with aluminum phthalocyanine mono- and disulfonate and with zinc phthalocyanine monosulfonate. With the protocol that was used, complete necrosis without recovery was only observed when reimplantation took place at the end of the 7 day follow-up period. Reimplantation 2 h after treatment always resulted in tumor regrowth. At this interval, the presence of viable tumor cells was confirmed histologically. In general tumor tissue vasculature was more susceptible to photodynamic damage than vasculature of the normal tissue. The effect on the circulation of both tumor and normal tissue increased with decreasing degree of sulfonation. Based on this study, the photodynamic effects using the six sulfonated metallophthalocyanines on the vasculature can be ranked from high to low as: AlPcS2= ZnPcS1 > AIPcS1 > AIPcS4 > ZnPcS2 > ZnPcS4.  相似文献   

18.
The 13,15-N-(3'-hydroxypropylcycloimide) chlorin p6 (CIC), which absorbs at 711 nm, possesses considerable photoinduced cell-killing activity. It is 43-, 61- and 110-fold more active than chlorin p6, 3-formyl-3-devinyl chlorin p6 and Photogem, respectively, and has no cytotoxicity without irradiation as estimated on A549 human adenocarcinoma cells. To attain the highest intracellular penetration and activity the monomeric form of CIC should be stabilized. This stabilization in an aqueous environment can be achieved using 0.002-0.005% of Cremophor EL emulsion (polyoxyethylene derivative of hydrogenated castor oil). The intracellular accumulation of CIC occurs in cytoplasm in a monomeric form bound to cellular membranes. This form of the dye is characterized by a high quantum yield of singlet oxygen generation (0.66 +/- 0.02). Besides diffuse staining of intracellular membranous structures, CIC accumulates 3- to 4-fold more intensely in mitochondria and Golgi apparatus, thus indicating these organelles to be the initial targets of its photodynamic action. The incubation time providing 50% accumulation level of CIC in cells is 30 +/- 5 min. The time for 50% release of CIC from the cells is 60 +/- 10 min. A 10-fold decrease in CIC intracellular penetration at 22 degrees C proves that temperature-sensitive mechanisms of transport, rather than diffusion, are responsible for the dye uptake. The average cytoplasmic concentration of CIC was seven times the extracellular concentration in the 0.2-1.6 microM range, used for the photodynamic activity measurements. The concentration of CIC and the light dose that correspond to ca 50% level of phototoxicity induce predominantly an apoptotic-type of cell death, whereas the conditions providing 100% level of phototoxicity induced necrosis. The results obtained indicate that cycloimide derivatives of chlorin p6 may serve as a base for the development of an efficient near-IR photosensitizer.  相似文献   

19.
In the present study, photodynamic activity of a novel photosensitizer (PS), Chlorin e(6)-2.5 N-methyl-d-glucamine (BLC 1010), was evaluated using the chorioallantoic membrane (CAM) as an in vivo model. After intravenous (i.v.) injection of BLC 1010 into the CAM vasculature, the applicability of this drug for photodynamic therapy (PDT) was assessed in terms of fluorescence pharmacokinetics, i.e. leakage from the CAM vessels, and photothrombic activity. The influence of different PDT parameters including drug and light doses on the photodynamic activity of BLC 1010 has been investigated. It was found that, irrespective of drug dose, an identical continuous decrease in fluorescence contrast between the drug inside and outside the blood vessels was observed. The optimal treatment conditions leading to desired vascular damage were obtained by varying drug and light doses. Indeed, observable damage was achieved when irradiation was performed at light doses up to 5 J/cm(2) 1 min after i.v. injection of drug doses up to 0.5 mg/kg body weight(b.w.). However, when irradiation with light doses of more than 10 J/cm(2) was performed 1 min after injection of drug doses up to 2 mg/kg body weight, this led to occlusion of large blood vessels. It has been demonstrated that it is possible to obtain the desired vascular occlusion and stasis with BLC 1010 for different combinations of drug and/or light doses.  相似文献   

20.
This paper reports the synthesis of a new diphenylchlorin photosensitizer, 2,3-dihydro-5,15-di(3,5-dihydroxyphenyl)porphyrin (SIM01). The photodynamic properties, cell uptake and localization of SIM01 were compared with those of structurally related meso-tetra(hydroxyphenyl)chlorin (m-THPC). In vitro studies were conducted on rat glioma cells (C6) and human adenocarcinoma (HT-29), and in vivo studies on human colon adenocarcinoma cells (HT-29) and human prostate adenocarcinoma cells (PC3). Both dyes showed an absorption maximum at around 650 nm, with a molar extinction coefficient of 13017 M(-1) cm(-1) for SIM01 and 22718 M(-1) cm(-1) for m-THPC. Their capacity to generate singlet oxygen was identical, but differences in partition coefficients indicated that SIM01 was slightly more hydrophilic. In vitro, SIM01 was slightly more phototoxic than m-THPC for C6 cells (4.8 vs. 6.8 microg ml(-1)). However, phototoxicities were nearly identical for HT29 cells (0.45 microg ml(-1) for 5 h incubation followed by 300 mW, 20 J cm(-2)). Pharmacokinetics in vivo in mice, as determined by fibre spectrofluorimetry, showed that the SIM01 fluorescence signal in the tumor was maximal between 6 and 12 h after injection, as compared to 72 h for m-THPC. With a 2 mg kg(-1) dye dose and laser irradiation at 300 J cm(-2) (650 nm, 300 mW), the optimal PDT response occurred when the interval between injection and irradiation was 6 h for SIM01 and 24 h for m-THPC. For SIM01 with 5 mg kg(-1) injection, the optimal PDT response occurred with a 12 h delay and with the same irradiation parameters as described above, in this case the tumor response showing 40% growth. Considering the tumor volume doubling time, the value was 6.5 days in the control group and increased to 13.5 days with SIM01. Thus, SIM01 may be a powerful sensitizer characterized by strong in vitro and in vivo phototoxicity and faster tissue uptake and elimination than m-THPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号