首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A rapid and sensitive HPLC enantioselective method with fluorescence detection was developed to determine (-)-(R) and (+)-(S) enantiomers of the metabolites of citalopram, demethyl- and didemethyl-citalopram in plasma and brain tissue. This assay involves pre-column chiral derivatization with (-)-(R)-1-(1-naphthyl)ethyl isocyanate followed by separation on a normal-phase silica column. The developed liquid-liquid extraction procedure permits quantitative determination of analytes with recoveries ranged between 81 and 88% with intra- and inter-day relative standard deviations less than 10.5%. Linearity was obtained over the concentration range 5-1000 ng/mL and 100-10,000 ng/g for spiked drug-free plasma and brain tissue, respectively, with detection limits lower than 2.1 ng/mL and 42.8 ng/g.  相似文献   

2.
A simple, sensitive and robust liquid chromatography/electrospray ionization tandem mass spectrometry (LCESI-MS/MS) method with low matrix effects was developed and validated for the quantification of the lipophilic antipsychotic ziprasidone from rat plasma and brain tissue. Ziprasidone was extracted from rat plasma and brain homogenate using a single-step liquid-liquid extraction. Ziprasidone was separated on an Agilent Eclipse XDB C8 column (150 x 2.1 mm i.d., 5 microm) column using a mobile phase of acetonitrile-0.02% ammonia in water (pH 7.20 adjusted with formic acid) using gradient elution. Ziprasidone was detected in the positive ion mode using multiple reaction monitoring. The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recovery, matrix effects and stability were determined. The LLOQ was 0.2 ng/mL for plasma and 0.833 ng/g for brain tissue. The method was linear over the concentration range from 0.2 to 200.0 ng/mL for plasma and 0.833-833.3 ng/g for brain tissue. The correlation coefficient (R2) values were more than 0.996 for both plasma and brain homogenate. The precision and accuracy intra-day and inter-day were better than 8.13%. The relative and absolute recovery was above 81.0% and matrix effects were lower than 5.2%. This validated method has been successfully used to quantify the rat plasma and brain tissue concentration of ziprasidone after chronic treatment.  相似文献   

3.
Sensitive and reproducible methods for the determination of oxycodone, oxymorphone and noroxycodone in Ringer solution, rat plasma and rat brain tissue by liquid chromatography/mass spectrometry are described. Deuterated analogs of the substances were used as internal standards. Samples in Ringer solution were analyzed by direct injection of 10 microL Ringer solution diluted by an equal volume of water. The limit of quantification was 0.5 ng/mL and the method was linear in the range of 0.5-150 ng/mL for all substances. To analyze oxycodone and oxymorphone in rat plasma, 50 microL of plasma were precipitated with acetonitrile, and the supernatant was directly injected onto the column. To analyze oxycodone, oxymorphone and noroxycodone in rat plasma, 100 microL of rat plasma were subjected to a C18 solid-phase extraction (SPE) procedure, before reconstituting in mobile phase and injection onto the column. For both methods the limit of quantification in rat plasma was 0.5 ng/mL and the methods were linear in the range of 0.5-250 ng/mL for all substances. To analyze the content of oxycodone, oxymorphone and noroxycodone in rat brain tissue, 100 microL of the brain homogenate supernatant were subjected to a C18 SPE procedure. The limit of quantification of oxycodone was 20 ng/g brain, and for oxymorphone and noroxycodone 4 ng/g brain, and the method was linear in the range of 20-1000 ng/g brain for oxycodone and 4-1000 ng/g brain for oxymorphone and noroxycodone. All methods utilized a mobile phase of 5 mM ammonium acetate in 45% acetonitrile, and a SB-CN column was used for separation. The total run time of all methods was 9 min. The intra-day precision and accuracy were <11.3% and <+/-14.9%, respectively, and the inter-day precision and accuracy were <14.9% and <+/-6.5%, respectively, for all the concentrations and matrices described.  相似文献   

4.
A ceramic/carbon composite was developed and applied as a novel coating for solid-phase microextraction (SPME). The ceramic/carbon coating exhibited several good properties for SPME, such as high extraction quantities and enhanced thermal and organic solvent stability. Under scanning electron microscopy (SEM), the tightly attached coating layer on stainless steel wire revealed excellent mechanical characteristics. Single fiber and fiber-to-fiber reproducibility were less than 6.9 and 9.5%, respectively. The effects of extraction and desorption parameters such as extraction time, stirring rate, ionic strength, and desorption temperature and desorption time on the extraction/desorption efficiency were investigated and optimized. Coupled to gas chromatography with a flame thermionic detector, the optimized SPME method was applied to the analysis of organophosphorus pesticides (OPPs) in aqueous samples. The calibration curves were linear from 0.05 to 200 ng mL(-1) for fenchlorphos, pirimiphos-methyl, chlorpyrifos, ethion and from 0.2 to 200 ng mL(-1) for quinalphos, and the limits of detection were between 5.2 and 34.6 ng L(-1). The recovery of the OPPs spiked in real water samples at 5 ng mL(-1) ranged from 86.2 to 103.4% and the relative standard deviations were less than 8.5%.  相似文献   

5.
Clenbuterol (CBL) is a potent beta(2)-adrenoceptor agonist used for the management of respiratory disorders in the horse. The detection and quantification of CBL can pose a problem due to its potency, the relatively low dose administered to the horse, its slow clearance and low plasma concentrations. Thus, a sensitive method for the quantification and confirmation of CBL in racehorses is required to study its distribution and elimination. A sensitive and fast method was developed for quantification and confirmation of the presence of CBL in equine plasma, urine and tissue samples. The method involved liquid-liquid extraction (LLE), separation by liquid chromatography (LC) on a short cyano column, and pseudo multiple reaction monitoring (pseudo-MRM) by electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS). At very low concentrations (picograms of CBL/mL), LLE produced better extraction efficiency and calibration curves than solid-phase extraction (SPE). The operating parameters for electrospray QTOF and yield of the product ion in MRM were optimized to enhance sensitivity for the detection and quantification of CBL. The quantification range of the method was 0.013-10 ng of CBL/mL plasma, 0.05-20 ng/0.1 mL of urine, and 0.025-10 ng/g tissue. The detection limit of the method was 13 pg/mL of plasma, 50 pg/0.1 mL of urine, and 25 pg/g of tissue. The method was successfully applied to the analysis of CBL in plasma, urine and various tissue samples, and in pharmacokinetic (PK) studies of CBL in the horse. CBL was quantified for 96 h in plasma and 288 h in urine post-administration of CLB (1.6 micro g/kg, 2 x daily x 7 days). This method is useful for the detection and quantification of very low concentrations of CBL in urine, plasma and tissue samples.  相似文献   

6.
A solid‐phase microextraction with carbon nanospheres coated fiber coupled with gas chromatographic detection was established for the determination of eight polycyclic aromatic hydrocarbons (naphthalene, biphenyl, acenaphthene, fluorine, phenanthrene, anthracene, fluoranthene, and pyrene) in water and soil samples. The experimental parameters (extraction temperature, extraction time, stirring rate, headspace volume, salt content, and desorption temperature) which affect the extraction efficiency were studied. Under the optimized conditions, good linearity between the peak areas and the concentrations of the analytes was achieved in the concentration range of 0.5‐300 ng/mL for water samples, and in the concentration range of 6.0‐2700 ng/g for soil samples. The detection limits for the analytes were in the range of 0.12‐0.45 ng/mL for water samples, and in the range of 1.53‐2.70 ng/g for soil samples. The method recoveries of the polycyclic aromatic hydrocarbons for spiked water samples were 80.10‐120.1% with relative standard deviations less than 13.9%. The method recoveries of the analytes for spiked soil samples were 80.40‐119.6% with relative standard deviations less than 14.4%. The fiber was reused over 100 times without a significant loss of extraction efficiency.  相似文献   

7.
Melanotan-II (MT-II), a synthetic analogue of the natural melanocortin peptide, alpha-melanocyte-stimulating hormone (alpha-MSH), is well known for the anorexic effects it elicits in rodents. These effects are, at least partly, associated with agonistic action on the centrally located melanocortin receptors, MC3R and MC4R. Whether MT-II exerts this effect via brain penetration still remains unclear. In order to address this question we administered MT-II in rodents at efficacious doses and then employed a sensitive methodology for the determination of MT-II in plasma and brain samples. MT-II was extracted from mouse plasma and brain tissue by acetonitrile precipitation followed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis. The described assay improved significantly previously reported MT-II levels of quantification in rat plasma and brain. The lower limits of quantification (LLOQs) of 0.5 ng/mL and 2.5 ng/g were obtained in 50 microL plasma and 100 microL brain homogenate, respectively. The calibration curve was linear over the concentration range of 0.5-500 ng/mL for plasma and 2.5-250 ng/g for brain tissue. The method was successfully applied in measuring levels of MT-II in plasma and brain tissue following intraperitoneal (ip) administration of 1 mg/kg of peptide in mice. Following administration of MT-II, clearance from plasma was rapid. The sensitivity of the assay allowed the determination of low concentrations of MT-II (11.4 +/- 5.5 ng/g) in brain homogenate at 30 min after dosing. However, the brain concentrations when compared with the high plasma levels of MT-II at the same time point confirmed the low penetrability of the peptide in mouse brain.  相似文献   

8.
Aripiprazole is an important antipsychotic drug. A simple, sensitive and rapid ultra‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC‐ESI‐MS/MS) method was developed and validated for the simultaneous quantification of this compound in rat plasma and brain homogenate. The analyte was extracted from rat plasma and brain homogenate using a weak cation exchange mixed‐mode resin‐based solid phase extraction. The compound was separated on an Agilent Eclipse Plus C18 (2.1 × 50 mm, 1.8 µm) column using a mobile phase of (A) 0.1% formic acid aqueous and (B) acetonitrile with gradient elution. The analyte was detected in positive ion mode using multiple reaction monitoring. The method was validated and the specificity, linearity, limit of quantitation (LOQ), precision, accuracy, recoveries and stability were determined. The LOQ was 0.5 ng/mL for aripiprazole in plasma and 1.5 ng/g in brain tissue. The MS response was linear over the concentration range 0.5–100 ng/mL for aripiprazole in plasma and 1.5–300 ng/g in brain tissue. The precision and accuracy for intra‐day and inter‐day were better than 14%. The relative and absolute recoveries were above 72% and the matrix effects were low. This validated method was successfully used to quantify the rat plasma and brain tissue concentrations of the analyte following chronic treatment with aripiprazole. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber‐coating material for the solid‐phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene‐coated fiber coupled with high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05‐0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0 ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene‐coated fiber showed higher extraction efficiency.  相似文献   

10.
In the present work molecularly imprinted sol-gel tablet (MIP-Tablet) was prepared. The MIP-sol-gel was prepared as a thin layer on polyethylene material in a tablet form. Methadone-d9 was selected as the template and 3-(propylmethacrylate)-trimethoxysilane was used as precursor. MIP-Tablet was applied for micro-solid phase extraction (μ-SPE). The MIP-Tablet was used for the determination of methadone in human plasma samples utilizing liquid chromatography-tandem mass spectrometry; and each tablet could be used twenty times. The extraction time was 10 min while desorption time was 6 min. Factors affecting the extraction efficiency such as desorption solvents, sample pH, salt addition, extraction time, desorption time and adsorption capacity were investigated. The calibration curves were obtained within the range of 5–5000 ng/mL using methadone in human plasma samples. The coefficients of determination (r2) values were ≥0.999 for all runs and the extraction recovery was >80%. The accuracy values for quality control samples varied from +3.6 to +9.7% and the inter-day precision (RSD %) values were ranged from 5.0 to 8.0%. The limit of detection was 1.0 ng/mL and the lower limit of quantification was 5 ng/mL utilizing methadone in human plasma samples.  相似文献   

11.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

12.
通过以Nation为黏合剂、不锈钢丝为涂层载体,制备了多壁碳纳米管固相微萃取纤维.该纤维的制备方法快速、简便、成本低,并具有热稳定性好(300℃)、使用寿命长(〉100次)、对多溴联苯萃取效率高等特点.研究优化了影响萃取及分离效率的解吸温度和时间、萃取时间、搅拌速度、盐度等实验条件,进行了海水中多溴联苯的测定.对一溴联苯的线性范围为0.1-5.0ng/mL,而二溴联苯、三溴联苯、四溴联苯和五溴联苯的线性范围均为0.01~5.0ng/mL.方法的检测限为0.1~0.8ng/L.在优化的条件下分别测定了0.1和1ng/mL多溴联苯的海水加标样品,回收率在91.1%~107.3%之间,相对标准偏差小于12%.该方法分析时间短、灵敏度高、操作简便,适用于水样中多溴联苯的痕量分析.  相似文献   

13.
Solid-phase microextraction (SPME) coupled to LC for the analysis of five diphenylether herbicides (aclonifen, bifenox, fluoroglycofen-ethyl, oxyfluorfen, and lactofen) is described. Various parameters of extraction of analytes onto the fiber (such as type of fiber, extraction time and temperature, pH, impact of salt and organic solute) and desorption from the fiber in the desorption chamber prior to separation (such as type and composition of desorption solvent, desorption mode, soaking time, and flush-out time) were studied and optimized. Four commercially available SPME fibers were studied. PDMS/divinylbenzene (PDMS/DVB, 60 microm) and carbowax/ templated resin (CW/TPR, 50 microm) fibers were selected due to better extraction efficiencies. Repeatability (RSD, < 7%), correlation coefficient (> 0.994), and detection limit (0.33-1.74 and 0.22-1.94 ng/mL, respectively, for PDMS/DVB and CW/TPR) were investigated. Relative recovery (81-104% for PDMS/DVB and 83-100% for CW/TPR fiber) values have also been calculated. The developed method was successfully applied to the analysis of river water and water collected from a vegetable garden.  相似文献   

14.
Wang G  Tang H  Chen D  Feng J  Li L 《色谱》2012,30(2):135-140
建立了香水中5种合成麝香的顶空固相微萃取-气相色谱-质谱联用分析方法。实验选用65 μm的聚二甲基硅氧烷-二乙烯基苯(PDMS-DVB)萃取纤维,在磁力搅拌600 r/min条件下,考察了萃取温度、平衡时间、萃取时间、解吸时间、进样口温度和盐效应6个方面对实验结果的影响。优化后的条件为: 10 mL顶空瓶中加入适量用水稀释过的样品,于60 ℃平衡3 min后,顶空萃取20 min,随即插入气相色谱进样口,于250 ℃解吸3 min进行定性、定量分析。5种合成麝香在0.05~1.00 μg/g范围内线性关系良好,检出限(LOD)为0.6~2.1 ng/g。空白样品在3个浓度加标水平下(0.05, 0.50, 1.00 μg/g)的回收率为82.0%~103.3%,相对标准偏差(RSD)为1.8%~9.4%。本方法简便、准确、快速、灵敏,适用于香水中合成麝香的分析检验工作。  相似文献   

15.
A gas chromatography/negative chemical ionization mass spectrometry (GC/NCIMS) method using headspace solid-phase microextraction (HS-SPME) was developed for the determination of trichloroethylene (TCE) in blood, liver, kidney, lung and brain. The method was optimized with respect to several parameters including extraction time, extraction temperature, desorption time and salt addition. The method showed good linearity over the range of 0.025-25 ng/mL in blood and 0.075-75 ng/g in tissues with correlation coefficient (R2) values higher than 0.99. The precision and accuracy for intra-day and inter-day measurements were less than 10%. The relative recoveries of all matrices were greater than 52%. Samples showed no significant loss during 8 h in the autosampler and following three freeze/thaw cycles. Validation results demonstrated that selected-ion monitoring of the 35Cl and 37Cl isotopes using NCI resulted in reliable and sensitive quantitation. This validated method was successfully applied to study the toxicokinetics of TCE following oral administration of extremely low doses of this potential human carcinogen to small test animals (rats).  相似文献   

16.
A liquid chromatographic-mass spectrometry (LC/MS) assay method was developed for the determination of amiodarone and desethylamiodarone in rat specimens. Analytes were extracted using liquid-liquid extraction in hexane. The LC/MS system consisted of a Waters Micromass ZQtrade mark 4000 spectrometer with an autosampler and pump. A C(18) 3.5 microm (2.1 x 50 mm) column heated to 45 degrees C was used for separation. The mobile phase consisted of methanol and 0.2% aqueous formic acid pumped at 0.2 mL/min as a linear gradient. Components eluted within 12 min. The concentrations of ethopropazine (internal standard), desethylamiodarone and amiodarone were monitored for m/z of 313.10, combination of 546.9 and 617.73, and 645.83, respectively. In plasma (0.1 mL), linearity was achieved between the peak area ratios and concentrations over the range of 2.5-1000 ng/mL for both amiodarone and desethylamiodarone (r(2) > 0.999). The intraday and interday CV were equal or less than 18%, and mean error was <12%. Similarly, in homogenates containing 0.1 g of rat tissue, linearity was observed in standards ranging from 5 to 5000 ng/g. The method was successfully used to measure tissue and plasma concentrations of drug. The validated lower limit of quantitation was 2.5 ng/mL for drug and metabolite, based on 0.1 mL of plasma.  相似文献   

17.
郭会华  陈刚  马玖彤  贾琼 《色谱》2017,35(3):318-324
利用1,3,6,8-四(4-醛基)芘和三聚氰胺为单体合成微孔有机聚合物(MOP),并将其固定在不锈钢丝上,制备成固相微萃取纤维涂层。将其用于顶空固相微萃取(HS-SPME),结合气相色谱-电子捕获检测手段,建立了对大米中有机氯农药的在线检测方法。实验考察了4种实验参数对富集能力的影响,得到了最优的实验条件:萃取温度80℃、萃取时间25 min、NaCl质量浓度200 g/L、解吸时间6 min。在此实验条件下,对有机氯农药的富集倍数达到115~318倍。方法在0.05~50μg/kg范围内具有良好的线性关系,检出限为2.4~11.3 ng/kg。同一纤维及不同纤维富集后测定结果的相对标准偏差范围分别为1.3%~13.1%和2.3%~13.6%。该方法简单、快速,可以实现对实际样品中有机氯农药的痕量分析。  相似文献   

18.
A simple, rapid and sensitive LC‐UV method was developed and validated for the determination of paclitaxel (PTX) in rabbit plasma and tissues. A 2 mL aliquot of acetonitrile and 10 μL ammonium acetate (pH 5.0, 6 m ) as extraction agents were used to markedly increase the extraction recoveries and greatly reduce the endogenous substances. The separation was achieved on a C18 column at 30 °C using an acetonitrile–ammonium acetate buffer (pH 5.0, 0.02 m ; 55:45, v/v) at a flow rate of 1.0 mL/min; UV detection was used at 227 nm. Good linearity was obtained between 0.025 and 10,000 µg/mL for plasma and between 0.025–200,000 µg/g for tissue samples (r > 0.999). The limit of detection was 6 ng/mL in plasma, 8 ng/g in heart and 12.5 ng/g in other tissues. The limit of quantitation was 25 ng/mL in plasma and heart, 125 ng/g in other tissues. The intra‐ and inter‐day assays of precision and accuracy for all bio‐samples ranged from 1.38 to 9.60% and from 83.6 to 114.5%, respectively. The extraction recoveries ranged from 70.1 to 109.5%. Samples were stable during three freeze–thaw cycles or stored in a freezer at ?20 °C for 30 days. The assay method was successfully applied to a study of the pharmacokinetics and tissue distribution of novel PTX lung targeting liposomes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A simple, sensitive and selective solid phase microextraction with hollow fiber-supported multi-walled carbon nanotube functionalization reinforced sol–gel combined HPLC method was proposed for the determination of naproxen in tap, well and river water samples. In this method, functionalized multi-walled carbon nanotubes (MWCNTs) were prepared and held in pores of hollow fiber with sol–gel technology by immersion of polypropylene hollow fiber segment into the sol of the functionalized MWCNTs/silica composite and ultrasonically treated at room temperature. Effect of main parameters such as volume of donor phase, pH, extraction time, desorption time, type of desorption solvent, sample ionic strength and stirring rate were studied. Under optimum conditions, linearity was observed in the range of 0.03–500 ng/mL, with correlation coefficients of 0.997. The relative standard deviation for three replicate determinations of 50 ng/mL of naproxen was 4.3%. Limit of detection and pre-concentration factor were 0.008 ng/mL and 198, respectively. In order to check the applicability of the proposed method, it was used to determine trace levels of naproxen in different water samples.  相似文献   

20.
Tizoxanide, the active metabolite of nitazoxanide, has recently been reported as an effective agent for the treatment of glioma. As there had been no report about the analysis of tizoxanide in brain tissue, we established extraction and UHPLC–MS/MS methods to quantify tizoxanide in rat brain and plasma to evaluate the brain-to-plasma ratio of tizoxanide. The biological samples were mainly prepared by acetonitrile and the separation was performed on a Waters XBridge® BEH C18 column. The mobile phase was composed of water mixed with 10 mm ammonium formate (pH 3.0) and acetonitrile according a gradient volume. Tizoxanide and topiramate (internal standard) were monitored utilizing negative electron spray ionization in multiple reaction monitoring mode. The methods were validated to be precise and accurate within the dynamic range of 5–1000 ng/mL and 0.2–50 ng/g for plasma and brain tissue samples, respectively. The lower limit of quantitation of the method was 0.2 ng/g, which was far more sensitive than all existing methods to quantify tizoxanide in biological samples. Application performed on rats exhibited that the brain-to-plasma ratio of tizoxanide ranged from 3.16 to 26.86% in 1 h after administration of 10 mg/kg nitazoxanide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号