首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Wave dynamic processes in cellular detonation reflection from wedges   总被引:4,自引:0,他引:4  
When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H 2/O 2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes. The English text was polished by Yumming Chen.  相似文献   

2.
A single spinning detonation wave propagating in a square tube is simulated three-dimensionally with the detailed chemical reaction mechanism for hydrogen/air mixture proposed by Petersen and Hanson. The spinning detonation is composed of a transverse detonation rotating around the wall normal to the tube axis, triple lines propagating partially out of phase, and a short pressure trail. The formation of an unburned gas pocket behind the detonation front was not observed in the present simulations because the rotating transverse detonation completely consumed the unburned gas. The calculated profiles of instantaneous OH mass fraction have a keystone shape behind the detonation front. The numerical results for the pitch and track angle on the tube wall agree well with the experimental results. This paper is based on work that was presented at the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems at Montreal, Canada, from July 31 to August 5, 2005.  相似文献   

3.
Behavior of detonation waves at low pressures   总被引:1,自引:0,他引:1  
With respect to stability of gaseous detonations, unsteady behavior of galloping detonations and re-initiation process of hydrogen-oxygen mixtures are studied using a detonation tube of 14 m in length and 45 mm i.d. The arrival of the shock wave and the reaction front is detected individually by a double probe combining of a pressure and an ion probe. The experimental results show that there are two different types of the re-initiation mechanism. One is essentially the same as that of deflagration to detonation transition in the sense that a shock wave generated by flame acceleration causes a local explosion. From calculated values of ignition delay behind the shock wave decoupled from the reaction front, the other is found to be closely related with spontaneous ignition. In this case, the fundamental propagation mode shows a spinning detonation. Received 10 March 1997 / Accepted 8 June 1997  相似文献   

4.
采用一种两步化学反应模型对胞格爆轰波的楔面马赫反射过程进行了数值研究,从而澄清和解释胞格不稳定性对马赫反射发展模式和自相似性的影响。考虑到反应欧拉方程源项的刚性问题,本文采用附加RungeKutta方法耦合非刚性对流项和刚性反应源项,对流项的离散采用五阶精度的WENO格式。计算结果表明,对于稳定胞格爆轰波而言,其马赫反射过程本质上与ZND爆轰波的马赫反射是一致的,整体上不存在自相似性,胞格不稳定性只是造成了三波点轨迹线局部小振幅的波动。在楔面顶点附近,由于马赫杆是强过驱的,爆轰波的马赫反射过程是自相似的。在远场,爆轰波马赫反射的三波点轨迹线渐近的趋向于一条直线,说明重新获得了自相似性。对于不稳定的爆轰波,由于自身的不稳定性可以与马赫反射的强度相匹配,定义其三波点的轨迹是困难的,进行自相似性分析没有意义。  相似文献   

5.
The two-dimensional, time-dependent, reactive Navier–Stokes equations including the effects of viscosity, thermal conduction and molecular diffusion were solved to reveal the wave evolution and chemical dynamics involved in the re-initiation process. The computation was performed for hydrogen–oxygen–argon mixtures at the low initial pressure (8.00 kPa), using detailed chemical reaction model. The results show that, the decoupled leading shock reflects on the right wall of the vertical branch. High temperature and pressure behind the reflected shock induce the generation of hot spots and local explosion. Therefore, the re-initiation of gaseous detonation occurs. In the re-initiation area, there exist very high OH concentration and no H 2 concentration. However, in front of reflected shock, there exist relatively high H 2 concentration and no OH radicals. Additionally, the shock–flame interaction induces RM instability. This results in the fast mixing between hot reacted gas mixture and the relatively cold unreacted gas mixture and accelerates the chemical reactions. However, the shock–flame interaction contributes much less to the re-initiation, in contrast with shock reflection. The transition of leading shock from regular reflection to Mach reflection happens during the re-initiation. The computed evolution of wave structures involved in the re-initiation is qualitatively agreeable with that from the experimental schlieren images.   相似文献   

6.
Doppler interferometry study of unstable detonations   总被引:2,自引:0,他引:2  
  相似文献   

7.
C. J. Wang  C. M. Guo 《Shock Waves》2014,24(5):467-477
The two-dimensional, time-dependent and reactive Navier–Stokes equations were solved to obtain an insight into Mach reflection of gaseous detonation in a stoichiometric hydrogen-oxygen mixture diluted by 25 % argon. This mixture generates a mode-7 detonation wave under an initial pressure of 8.00 kPa. Chemical kinetics was simulated by an eight-species, forty-eight-reaction mechanism. It was found that a Mach reflection mode always occurs for a planar detonation wave or planar air shock wave sweeping over wedges with apex angles ranging from \(5^\circ \) to \(50^\circ \) . However, for cellular detonation waves, regular reflection always occurs first, which then transforms into Mach reflection. This phenomenon is more evident for detonations ignited under low initial pressure. Low initial pressure may lead to a curved wave front, that determines the reflection mode. The stochastic nature of boundary shape and transition distance, during deflagration-to-detonation transition, leads to relative disorder of detonation cell location and cell shape. Consequently, when a detonation wave hits the wedge apex, there appears a stochastic variation of triple point origin and variation of the angle between the triple point trajectory and the wedge surface. As the wedge apex angle increases, the distance between the triple point trajectory origin and the wedge apex increases, and the angle between the triple point trajectory and the wedge surface decreases exponentially.  相似文献   

8.
Detonation in gaseous nitromethane (NM) and mixed with O2 has been studied. Experiments were performed in a preheated steel tube at an initial temperatureT 0∼=390 K for different initial pressuresP 0 (1.7≥P 0≥5 10−2 bar). Different selfsustained detonation regimes were obtained, from multiheaded mode to spinning and galloping mode in marginal conditions. These chemical systems were characterized by a specific detonation cellular structure very different from that currently observed with classical gaseous C n H m /O2/N2 mixtures. All modes of detonation propagation in rich NM/O2 mixtures exhibit a double scale cellular structure. The pattern of this double scale structure is particularly clear in the case of spinning mode. An abridged version of this paper was presented at the 15th Int. Colloquium on the Dynamics of Explosions and Reactive Systems at Boulder, Colorado, from July 30 to August 4, 1995  相似文献   

9.
Recently, we have used scarce available data on the detonation cell size in suspensions of aluminium particles in air and oxygen to adjust the kinetic parameters of our two-phase model of detonations in these mixtures. The calculated detonation cell width was derived by means of two-dimensional (2D) unsteady simulations using an assumption of cylindrical symmetry of the flow in the tube. However, in reality, the detonation cells are three-dimensional (3D). In this work, we have applied the same detonation model which is based on the continuous mechanics of two-phase flows, for 3D numerical simulations of cellular detonation structures in aluminium particle suspensions in oxygen. Reasonable agreement on the detonation cell width was obtained with the aforementioned 2D results. The range of tube diameters where detonations in $\text{ Al/O}_2$ mixture at a given particle size and concentration would propagate in the spinning mode has been estimated (these results make a complement to our previous analysis of spinning detonations in Al/air mixtures). Coupling these results with the dependencies of detonation cell size on the mean particle diameter is of great interest for the understanding of fundamental mechanisms of detonation propagation in solid particle suspensions in gas and can help to better guide the experimental studies of detonations in aluminium suspensions. It is shown that the part of detonation wave energy used for transverse kinetic energy of both gas and particles is quite small, which explains why the propagation velocity of spinning and multi-headed detonations reasonably agrees with the ideal CJ values.  相似文献   

10.
When a plane detonation propagating through an explosive comes into contact with a bounding explosive, different types of diffraction patterns, which may result in the transmission of a detonation into the bounding mixture, are observed. The nature of these diffraction patterns and the mode of detonation transmission depend on the properties of the primary and bounding explosives. An experimental and analytical study of such diffractions, which are fundamental to many explosive applications, has been conducted in a two channel shock tube, using H2-O2 mixtures of different equivalence ratios as the primary and bounding or secondary explosive. The combination of mixtures was varied from rich primary / lean secondary to lean primary / rich secondary since the nature of the diffraction was found to depend on whether the Chapman-Jouguet velocity of the primary mixture,D p, was greater than or less than that of the secondary mixture,D s. Schlieren framing photographs of the different diffraction patterns were obtained and used to measure shock and oblique detonation wave angles and velocities for the different diffraction patterns, and these were compared with the results of a steady-state shock-polar solution of the diffraction problem. Two basic types of diffraction and modes of detonation reinitiation were observed. WhenD p>D s, an oblique shock connecting the primary detonation to an oblique detonation in the secondary mixture was observed. WithD p<D s, two modes of reinitiation were observed. In some cases, ignition occurs behind the Mach reflection of the shock wave, which is transmitted into the secondary mixture when the primary detonation first comes into contact with it, from the walls of the shock tube. In other cases, a detonation is initiated in the secondary mixture when the reflected shock crosses the contact surface behind the incident detonation. These observed modes of Mach stem and contact surface ignition have also been observed in numerical simulations of layered detonation interactions, as has the combined oblique-shock oblique-detonation configuration whenD p>D s. WhenD p>D s, the primary wave acts like a wedge moving into the secondary mixture with velocityD p after steady state has been reached, a configuration which also arises in oblique-detonation ramjets and hypervelocity drivers.  相似文献   

11.
爆轰波在突扩通道中传播的数值模拟研究   总被引:1,自引:1,他引:1  
建立了描述甲烷 空气混合物爆轰波传播的单步化学反应爆轰模型 ,通过数值模拟研究了在二维突扩通道中爆轰波的强度变化和各种波行为。结果表明 :爆轰波在进入突扩通道初始阶段的衍射使爆轰波局部向爆燃转变 ;爆炸波在壁面发生马赫反射形成的高温高压区域将直接诱导自持爆轰波的重新形成。  相似文献   

12.
A simplified theoretic method and numerical simulations were carried out to investigate the characterization of propagation of transverse shock wave at wedge supported oblique detonation wave.After solution validation,a criterion which is associated with the ratio Φ (u 2 /u CJ) of existence or inexistence of the transverse shock wave at the region of the primary triple was deduced systematically by 38 cases.It is observed that for abrupt oblique shock wave (OSW)/oblique detonation wave (ODW) transition,a transverse shock wave is generated at the region of the primary triple when Φ < 1,however,such a transverse shock wave does not take place for the smooth OSW/ODW transition when Φ > 1.The parameter Φ can be expressed as the Mach number behind the ODW front for stable CJ detonation.When 0.9 < Φ < 1.0,the reflected shock wave can pass across the contact discontinuity and interact with transverse waves which are originating from the ODW front.When 0.8 < Φ < 0.9,the reflected shock wave can not pass across the contact discontinuity and only reflects at the contact discontinuity.The condition (0.8 < Φ < 0.9) agrees well with the ratio (D ave /D CJ) in the critical detonation.  相似文献   

13.
Experimental study on spherically imploding detonation waves   总被引:1,自引:0,他引:1  
Spherically imploding detonation waves propagating in a stoichiometric propane-oxygen mixture in a convergent hemispherical space having an innerdiameter of 800 mm were experimentally investigated with an intention to clarify the reason for the anomalous increase of the pressure and temperature behind the imploding detonation waves observed in a smaller vessel having an inner-diameter of 360 mm. The relations between the radial distance of the detonation front, the peak pressure, spectroscopic temperature at the imploding detonation front and those behind the shock waves reflected from the implosion focus show almost the same tendencies as in the smaller convergent space. The pressure as well as the temperature at the imploding detonation front increases, with the propagation of the implosion, more rapidly than theoretically estimated. The reason for it is attributed to the double imploding detonation waves.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

14.
实验采用压力传感器测量了指定点压力时间曲线。数值模拟基于二维反应欧拉方程和基元反应模型,采用二阶附加半隐的龙格-库塔法和5阶WENO格式分别离散时间和空间导数项,获得了指定点数值压力时间曲线。理论分析基于爆轰理论和激波动力学,分析了气相爆轰波反射过程所涉及的复杂波系演变并获得了反射激波速度。结果表明:本文数值模拟和理论计算定性上重复并解释了实验现象。气相爆轰波在右壁面反射后,右行稀疏波加速反射激波。其加速原因是:尽管激波波前声速减小,但激波马赫数增大,波前气流速度减小。在低初压下,可能还由于爆轰波后未反应或部分反应气体的作用,导致反射激波加速幅度比高初压下大。  相似文献   

15.
可燃气体中激波聚焦的点火特性   总被引:4,自引:0,他引:4  
滕宏辉  王春  邓博  姜宗林 《力学学报》2007,39(2):171-180
数值模拟了二维平面激波从抛物面上反射在可燃气体中聚焦的过程,研究了形 成爆轰波的点火特性. 对理想化学当量比氢气/空气混合气体,在初始压强20kPa的条件下, 马赫数2.6-2.8的激波聚焦能产生两个点火区:第1个点火区是反射激波会聚引起的,第 2个点火区是由入射激波在抛物面上发生马赫反射引起的. 这种条件下流场中会出现爆燃转 爆轰,起爆点分别分布在管道壁面、抛物反射面和第2点火区附近. 起爆机理分别为激波管 道壁面反射、点火诱导激波的抛物面反射和点火诱导的激波与第2点火区产生的爆燃波的相 互作用. 不同的点火和起爆过程导致了不同的流场波系结构,同时影响了爆轰波传播的波动 力学过程.  相似文献   

16.
We have investigated the evolution of cellular detonation-wave structure as a gaseous detonation travels along a round tube and measured cell lengths as a function of the initial pressure of the gas. We have tested acetylene-containing combustible gas mixtures with different degrees of regularity. Along with the smoked-foil technique, an emission method has been used to the measure current and average values of the detonation cell length. The method is based on the detection of an emission spectrum behind the detonation front in the spectral range corresponding to local gas temperatures that are much higher than those for the Chapman-Jouguet equilibrium condition. This technique provides quasi-continuous cell-length measurements along the normal to the detonation front over the length of several factors of ten times the tube. Our study has experimentally identified the steady states of detonation structure in round tubes, referred to here as the single detonation modes. When the state of a single mode is fully established, then both the flow structure and the energy release at detonation front develop strictly periodically along the tube at a constant frequency inversely proportional to the cell length of the mixture. The mixture regularity has had no influence on the occurrence of the detonation mode, which is defined by the value of initial pressure or the total energy release of the mixture. Outside of the pressure range where a detonation mode was most likely to occur, the detonation front is unstable and may exhibit an irregular cellular pattern. Monitoring the evolution of cells over a long distance revealed that the local gas emissivity, which is time dependent and corresponds to axial pulsations of the detonation structure, has the appearance of a superposition of separate harmonics describing the states of emissivity oscillations and cell structure of single detonation modes. Received 18 October 1999 / Accepted 10 June 2001  相似文献   

17.
Magnetogasdynamic (MGD) flows with detonation waves and combustion fronts have attracted more and more attention in recent years. Intensive heat supply assures such a significant increase in the temperature and pressure behind the heat liberation fronts that the gaseous combustion products become conductive so that the flow map in the electric and magnetic fields can vary substantially as compared with ordinary gasdynamics. In the case of finite gas conductivity, when the magnetic Reynolds numbers Rm are low, the asymptotic laws of detonation wave propagation which either go over into the Chapman-Jouguet (CJ) mode (in a number of cases at a finite distance from the initiation source) or remain overcompressed, have been studied [1]. Stationary flow modes behind detonation waves have been investigated in [2] and the problem of the detonation wave originating at the closed end of the tube emerging in the stationary mode in crossed homogeneous magnetic and electric fields has been examined. Results are presented in this paper of an investigation of one-dimensional self-similar flows caused by piston motion in a hot gas mixture in which a detonation wave or combustion front is propagated. The motion is realized in external electric and magnetic fields which exert a substantial effect on the flow of the conductive combustion products. Domains of application of the governing parameters in which the various flow modes are realized are found by using a qualitative and numerical analysis. The results obtained are used to solve problems about the hypersonic gas flow around a thin wedge in an axial magnetic field.  相似文献   

18.
对平面激波和单个矩形障碍物作用的过程进行了数值模拟,研究了反射产生的上行爆轰波在下游可燃气体中形成爆轰波的过程。数值结果表明,下游爆轰波形成过程主要有2种模式:爆轰波直接绕射和绕射波在上壁面反射,这和已有的实验结果是一致的。通过研究下游爆轰波的形成过程受入射激波马赫数、混合气体的压力和管道尺度的影响,分析了上游爆轰波向下游传播的波动力学过程,讨论了2种形成过程的作用规律和控制因素,阐明了下游爆轰波的形成规律。  相似文献   

19.
气相爆轰波绕射流场显示研究   总被引:2,自引:1,他引:1  
采用基于红宝石激光器(波长694.3 nm)的纹影系统,对气相爆轰波绕射进行了初步的流场显示研究。采用单色激光和合适半带宽(15 nm)的滤光片,有效地消除了爆轰波自发光对流场显示的影响。合理设置激光器同步控制系统的触发延时,得到了序列的爆轰波阵面纹影照片。结果表明:图像清晰地显示了爆轰波阵面的诱导激波、横波及化学反应区。当爆轰波在左尖点处绕射,受稀疏波作用,诱导激波与化学反应区明显分离,导致爆轰波衰减为爆燃。分离的诱导激波和折皱的化学反应区在纹影图上清晰可见。诱导激波在垂直支管右壁面反射,诱导二次起爆。畸变爆轰波在水平和垂直支管中均发生马赫反射。提高初压,爆轰波受分叉口几何属性的影响减小,畸变爆轰波在水平和垂直支管下游较易恢复为自持爆轰波。  相似文献   

20.
Detonation initiation is investigated in aluminium/oxygen and aluminium/air mixtures. Critical conditions for initiation of spherical detonations are examined in analogy with the criteria defined for gaseous mixtures, which correlate critical parameters of detonation initiation to the characteristic size of the cellular structure. However, experimental data on the detonation cell size in these two-phase mixtures are very scarce, on account of the difficulty to perform large-scale experiments. Therefore, 2D numerical simulations of the detonation cellular structure have been undertaken, with the same combustion model for Al/air and Al/O2 mixtures. The cell size is found to be λ = 37.5 cm for a rich (r = 1.61) aluminium–air mixture, and λ = 7.5 cm for a stoichiometric aluminium-oxygen mixture, which is in reasonable agreement with available experimental data. Calculations performed in large-scale configurations (up to 25 m in length and 1.5 m in lateral direction) suggest that the critical initiation energy and predetonation radius for direct initiation of the unconfined detonation in the aluminium–air mixture are, respectively, 10 kg of TNT and 8 m. Moreover, numerical simulations reveal that the structure of the detonation wave behind the leading front is even more complicated than in pure gaseous mixtures, due to two-phase flow effects. This paper is based on work that was presented at the 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号