首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Within the topic of surfactant enhanced solubilization of additives sparingly soluble in water, volumetric, solubility, conductivity, and small-angle neutron scattering (SANS) experiments on mixtures composed of alpha,omega-dichloroalkane, surfactant, copolymer, and water were carried out at 298 K. The triblock copolymers (ethylene oxide)132(propylene oxide)50(ethylene oxide)132 (F108) and (ethylene oxide)76(propylene oxide)29(ethylene oxide)76 (F68) were chosen to investigate the role of the molecular weight keeping constant the hydrophilic/hydrophobic ratio. The selected surfactants are sodium decanoate (NaDec) and decyltrimethylammonium bromide (DeTAB) with comparable hydrophobicity and different charged heads. The alpha,omega-dichloroalkanes were chosen as contaminant prototypes. For the water + surfactant + copolymer mixtures, both the volume and the SANS results straightforwardly evidenced that (1) monomers of NaDec and copolymer unimers generate small mixed aggregates, (2) monomers of DeTAB combined with copolymer unimers do not form aggregates, and (3) unimeric copolymer is solubilized into NaDec and DeTAB micelles. The alpha,omeaga-dichloroalkanes presence induces the F108 aggregation even at very low copolymer composition. The addition of surfactant disintegrates the F108 aggregates and, consequently, the additive is expelled into the aqueous phase. Once F108 is in the unimeric state, it forms copolymer-micelle aggregates which incorporate the oil. In the case of F68 both the volumetric and the SANS data reveal that the additive does not alter the copolymer unimeric state. Moreover, they show that for the aqueous DeTAB-F68 system the additive trapping in both the copolymer-micelle aggregate and the pure micelles takes place being enhanced in the former aggregate in agreement with solubility experiments. For the NaDec-F68 mixtures, an additional solubilization process in the premicellar copolymer-surfactant microstructures occurs. SANS and conductivity data show that the additive incorporation into the mixed and the pure micelles does not essentially influence the structural properties of the aggregates.  相似文献   

2.
Steady-state fluorescence measurements and isothermal titration calorimetric experiments have been performed to study the interaction between a telechelic polymer, pyrene-end-capped poly(ethylene oxide) (PYPY), and sodium alkyl sulfate surfactants having decyl, dodecyl, and tetradecyl hydrocarbon tails. Fluorometric results suggest polymer-surfactant interaction in the very low range of polymer concentrations. The relative variation in the excimer to monomer pyrene emission intensities with varying surfactant concentration reveals that initial addition of surfactant favors intramolecular preassociation until the surfactant molecules start binding with the ethylene oxide (EO) chain. With the growing number of surfactant aggregates along the EO chain, the association becomes hindered due to the polyelectrolyte effect. The results from microcalorimetric titrations in the low concentration range of PYPY solution (approximately 10(-6) M) with alkyl sulfates suggest two kinds of surfactant-polymer interactions, one with the polymer hydrophobic end groups and the other with the ethylene oxide backbone. The overall polymer-surfactant interaction starts at a much lower surfactant concentration for the hydrophobically modified polymers compared to that in the case of unsubstituted poly(ethylene oxide) homopolymer. From the experiments critical aggregation concentration values and the second critical concentration where free micelles start forming have been determined. An endeavor has been made to unveil the mechanism underlying the corresponding associations of the surfactants with the polymer.  相似文献   

3.
The aqueous solution of poly(ethylene oxide) (PEO) in the presence of different concentrations of sodium dodecyl sulfate (SDS) was examined by laser light scattering and isothermal titration calorimetric techniques. A small fraction of PEO aggregates were found to coexist with unimeric PEO chains in dilute solution. The presence of monovalent salt does not alter the hydrodynamic properties of PEO in aqueous solution. Addition of a monovalent anionic surfactant, such as SDS, induces cooperative binding of surfactant monomers to PEO backbones at SDS concentrations ranging from 4.0 mM (critical aggregation concentration) to 16.5 mM (saturation concentration). The hydrodynamic radius of PEO unimers decreases initially and then increases with SDS concentration, resulting from the structural reorganization of the PEO/SDS complex. Beyond the saturation concentration, the hydrodynamic radii of PEO/SDS complex are independent of SDS concentration.  相似文献   

4.
The differential excess enthalpy of mixed micelle formation was measured at different temperatures by mixing nonionic hexa(ethylene glycol) mono n-dodecyl ether with anionic sodium dodecyl sulfate or cationic dodecylpyridinium chloride. The experimental data were obtained calorimetrically by titrating a concentrated surfactant solution into a micellar solution of nonionic surfactant. The composition and the size of the mixed nonionic/ionic micelles at different surfactant concentrations were also determined. Pronounced differences in both composition and excess enthalpy were found between the anionic and the cationic mixed system. For both systems, the excess enthalpies become more exothermic with increasing temperature, but for the anionic mixed system an additional exothermic contribution was found which was much less temperature dependent. Temperature dependence of the excess enthalpy was attributed to the effect of the ionic headgroup on the hydration of the ethylene oxide (EO) groups in the mixed corona. Ionic headgroups located in the ethylene oxide layer cause the dehydration of the EO chains resulting in an additional hydrophobic contribution to the enthalpy of mixing. A high affinity of sodium dodecyl sulfate for nonionic micelles and an extra exothermic and less temperature dependent contribution to the excess enthalpy found for the SDS-C(12)E(6) system might be attributed to specific interactions (hydrogen bonds) between the sulfate headgroup and the partly dehydrated EO chain.  相似文献   

5.
Summary: A surfactant's efficiency for a given application is dependent on its chemical structure and physical-chemical properties in solution, including surfactant solubility as a function of concentration and temperature as well as adsorption and aggregation behavior. This review work describes the main physical-chemical properties ascertained by means of various characterization techniques, which can be used to study nonionic surfactants based on poly(ethylene oxide)-block-poly(propylene oxide) (PEO-PPO). Among these, some are widely used and others are relatively new for this type of application.  相似文献   

6.
The effect of TbCl3 on the aggregation processes of the anionic surfactants sodium decyl sulfate (SDeS) and sodium dodecyl sulfate (SDS) has been investigated. Electrical conductivity data, combined with Tb(III) luminescence measurements suggest that the formation of micelles involving TbCl3 and SDS occurs at concentrations below the critical micelle concentration (cmc) of the pure surfactants; the formation of these mixed aggregates was also monitored by light scattering, which indicates that the addition of TbCl3 to surfactant concentration at values below the pure surfactant cmc results in a much greater light scattering than that found with pure sodium alkylsulfate surfactant micelles. This phenomenon is dependent upon the alkyl chain length of the surfactant. With Tb(III)/DS-, complexes are formed with a cation/anion binding ratio varying from 3 to 6, which depends upon the initial concentration of Tb(III). This suggests that the majority of the cation hydration water molecules can be exchanged by the anionic surfactant. When the carbon chain length decreases, interactions between surfactant and Tb(III) also decrease, alterations in conductivity and fluorescence data are not so significant and, consequently, no binding ratio can be detected even if existing. The surfactant micellization is dependent on the presence of electrolyte in solution with apparent cmc being lower than the corresponding cmc value of pure SDS.  相似文献   

7.
The composition and morphology of mixed adsorbed layers comprising one of several poly(oxyethylene) alkyl ether nonionic surfactants, C(i)E(j), and two cationic surfactants-dodecyltrimethylammonium bromide (DTAB) and tetradecyltriethylammonium bromide (TTeAB)-at the mica/solution interface have been studied using depletion adsorption and atomic force microscopy. The nonionic surfactants do not themselves adsorb onto mica, but can coadsorb with a cationic surfactant. The extent of their hydrophobic association with the adsorbed cationic surfactant depends on alkyl chain length, while the adsorbed layer morphologies are sensitive to the number of ethoxy groups. Nonionic surfactants with headgroups containing less than eight ethylene oxide units decrease the adsorbed aggregate curvature, gradually transforming globular TTeAB or cylindrical DTAB adsorbed aggregates into a rod, mesh, or bilayer structure. Those with larger headgroups favor globular aggregates. The mechanism by which the nonionic surfactant modifies the adsorbed morphology is the formation of defects in the form of cylinder end-caps or branch-points, leading to adsorbed layer compositions that differ from ideal mixing predictions. All mixed adsorbed films become saturated with the nonionic component when the capacity of the aqueous side of the adsorbed layer is reached.  相似文献   

8.
Sodium di(2-ethylhexyl) sulfosuccinate (DOSS) and sodium di(2-ethylhexyl) phosphate (NaDEHP) surfactants, with double alkyl chains and negatively charged headgroups, were characterized using fluorescence quenching, densitometry, and tensiometry techniques to determine their aggregation number, partial specific volume, and critical aggregation concentration. These two surfactants were then applied as pseudostationary phases in micellar electrokinetic chromatography (MEKC) for separations of alkyl phenyl ketones. The aggregation number of NaDEHP was found to be more than two-fold higher than that of DOSS. The partial specific volumes of NaDEHP and DOSS were found to be 0.9003 and 0.8371 mL/g, respectively. The critical aggregation concentrations are 5.12 and 1.80 mM for NaDEHP and DOSS, respectively. The DOSS surfactant provided a wider separation window and had a greater hydrophobic environment than the NaDEHP surfactant under the MEKC experimental conditions studied.  相似文献   

9.
A series of ethoxylated sodium monooctyl sulfosuccinates [E(n)SMOSS] and ethoxylated sodium monolauryl sulfosuccinates [E(n)SMLSS] have different units of ethylene oxide (n = 9, 14, 23) were synthesized. The surface and thermodynamic properties of these surfactants have been compared with sodium dioctyl sulfosuccinate surfactant (SDOSS) as a commonly used surfactant. The surface tension measurements at 25, 35, 45, and 55°C were used to determine of the critical micelle concentration (CMC) and surface active properties of these surfactants. The effect of the ethylene oxide (EO) unit and the alkyl chain length on the surface properties for the prepared surfactants was studied. The results show that the ethoxylated sodium monoalkyl sulfosuccinates generally have lower values of CMC than that of sodium dioctyl sulfosuccinate. The values of surface active parameters indicate that the ethoxylated sodium monooctyl sulfosuccinates and ethoxylated sodium monolauryl sulfosuccinates surfactants have adsorption properties better than the sodium dioctyl sulfosuccinate surfactant as a resulted presence of ethylene oxide in molecules of the prepared surfactants. The thermodynamic parameters show that the (EO) unites in the chemical structure of ethoxylated sodium monoalkyl sulfosuccinate surfactants improve their micellization and adsorption properties.  相似文献   

10.
A systematic investigation of the micellization process of a biocompatible zwitterionic surfactant 3-[(3-cholamidopropyl)-dimethylammonium]-1-propanesulfonate (CHAPS) has been carried out by isothermal titration calorimetry (ITC) at temperatures between 278.15 K and 328.15 K in water, aqueous NaCl (0.1, 0.5, and 1 M), and buffer solutions (pH = 3.0, 6.8, and 7.8). The effect of different cations and anions on the micellization of CHAPS surfactant has been also examined in LiCl, CsCl, NaBr, and NaI solutions at 308.15 K. It turned out that the critical micelle concentration, cmc, is only slightly shifted toward lower values in salt solutions, whereas in buffer media it remains similar to its value in water. From the results obtained, it could be assumed that CHAPS behaves as a weakly charged cationic surfactant in salt solutions and as a nonionic surfactant in water and buffer medium. Conventional surfactants alike, CHAPS micellization is endothermic at low and exothermic at high temperatures, but the estimated enthalpy of micellization, ΔHM0, is considerably lower in comparison with that obtained for ionic surfactants in water and NaCl solutions. The standard Gibbs free energy, ΔGM0, and entropy, ΔSM0, of micellization were estimated by fitting the model equation based on the mass action model to the experimental data. The aggregation numbers of CHAPS surfactant around cmc, obtained by the fitting procedure also, are considerably low (nagg ≈ 5 ± 1). Furthermore, some predictions about the hydration of the micelle interior based on the correlation between heat capacity change, Δcp,M0, and changes in solvent-accessible surface upon micelle formation were made. CHAPS molecules are believed to stay in contact with water upon aggregation, which is somehow similar to the micellization process of short alkyl chain cationic surfactants.  相似文献   

11.
The interactions between triblock copolymers of poly(ethylene oxide) and poly(propylene oxide), P103 and F108, EO(n)PO(m)EO(n), m = 56 and n = 17 and 132, respectively, and gemini surfactants (oligooxa)-alkanediyl-alpha,omega-bis(dimethyldodecylammonium bromide) (12-EO(x)-12), x = 0-3, have been studied in aqueous solution using isothermal titration calorimetry. The thermograms of F108 as a function of surfactant concentration show one broad peak at polymer concentrations, Cp, < or =0.50 wt %, below the critical micelle concentration (cmc) of the copolymer at 25 degrees C. It is attributed to interactions between the surfactant and the triblock copolymer monomer. The critical aggregation concentration (cac) remains constant while deltaHmax2 and the saturation concentration, C2, increase with increasing copolymer concentration. Analysis of the cac data offers semiquantitative support that the degree of ionization of the surfactant aggregates bound to polymers is likely to be larger than that at the surfactant cmc. In P103 solutions at Cp > or = 0.05 wt %, two peaks appear in the thermograms and they are attributed to the interactions between the gemini surfactant and the micelle or monomeric forms of the copolymer. An origin-based nonlinear fitting program was employed to deconvolute the two peaks and to obtain estimates of peak properties. An estimate of the fraction of copolymer in aggregated form was also obtained. The enthalpy change due to interactions between the surfactants and P103 aggregates is very large compared to values obtained for traditional surfactants. This suggests that extensive reorganization of copolymer aggregates and surrounding solvent occurs during the interaction. Dehydration of the copolymers by the surfactant may also play an important step in the interaction. The endothermic enthalpy change reflecting interactions between the surfactant and polymer decreases more rapidly as the length and hydrophilic character of the spacer increases, suggesting that more favorable interactions occur with the P103 monomers having shorter PEO segments.  相似文献   

12.
Polystyrene nanoparticles were synthesized by emulsion polymerization of styrene. They were functionalized using the conventional surfactant N,N-dimethyloctylamine-N-oxide (ODAO), the tri-block copolymer (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) (L64) and their mixtures. To this purpose, dynamic light scattering and calorimetric experiments were carried out and provided information consistent to each other. The L64 adsorption is Langmuir-type in the copolymer dilute regime and generates complex structures at larger concentrations. In the region where ODAO is in the unimeric state, the adsorption process is cooperative leading to hemi-micelle formation at the polystyrene nanoparticle/water interface. In the concentrated region (above the critical micellar concentration), ODAO forms micelles which interact with the solid substrate most likely through ion-dipole forces. The ODAO addition to the dispersion containing polystyrene particles already wrapped by L64 creates an ODAO thickness around the dispersed particles the size of which is equal to that in the absence of the copolymer, but is built at much lower concentrations. A plausible interpretation of this behavior is that the adsorbed L64 confers to the nanoparticles surface novel properties which enhance the attractive forces with the ODAO molecules.  相似文献   

13.
The interaction between poly(ethylene oxide) or poly(vinylpyrrolidone) and cesium and tetraalkylammonium (tetramethyl to tetrabutyl ammonium) dodecylsulfate has been investigated by means of electrical conductivity measurements to determine the critical aggregation concentration (cac) of the surfactants in the presence of polymer. The cac values were compared to the values of the critical micellization concentration (cmc) of the surfactants in the absence of polymer. The value of the cac/cmc ratio increased with the radius of the counterion in the sequence: Na(+)相似文献   

14.
The effect of sodium chloride (NaCl) upon the thermally induced association behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, Pluronic P103, has been investigated using pyrene fluorescence spectroscopy. The critical micellization temperature (CMT) of Pluronic P103 in aqueous solution is decreased by the addition of NaCl. The standard enthalpy and entropy of micellization for Pluronic P103 in water are increased in the presence of small amounts of NaCl, but further addition of NaCl decreases the standard enthalpy and entropy of micellization. The I1/I3 ratio of pyrene in aqueous Pluronic P103 solutions at temperature below the CMT decreases with increases of NaCl concentration, which is related to the decrease of PPO solubility. The decrease in polarity of the PPO shifts the CMT toward lower temperature.  相似文献   

15.
Mixtures of the anionic surfactants sodium dodecyl sulfate (SDS) and sodium dodecanoate (SDoD) were investigated regarding their ability to bind to a hydrophilic nonionic polymer, polyethylene oxide (PEO). By electrical conductivity measurements, the parameters with respect to the onsets of surfactant aggregation were determined in the presence of 0.06 M PEO (critical aggregation concentration) and in its absence (critical micelle concentration). It was found that both plots of these parameters for the multicomponent mixtures against molar fraction of SDoD showed an ideal mixing behavior. The same technique was used to estimate the degree of ionization as a fundamental parameter relating to the interfacial composition of mixed aggregates. In addition, in order to monitor changes in polymer-surfactant structures, we used steady-state quenching fluorescence measurements to characterize the sizes of PEO-SDS/SDoD complexes at different compositions of the complex mixture. Copyright 1999 Academic Press.  相似文献   

16.
Aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO109-PPO41-PEO109) copolymers are nonionic surfactants that self-organize to form aggregate structures with increasing temperature or concentration. We have studied two concentrations over a range of temperatures so that the copolymers are in one of three microphases: unimers, micelles, or hydrogels formed from body centered cubic aggregates of micelles. Three different coumarin dyes were chosen based on their hydrophobicity so that different aggregate regions could be probed independently-water insoluble coumarin 153 (C153), hydrophobic coumarin 102 (C102), and the hydrophilic sodium carboxylate form of coumarin 343 (C343-). Fluorescence anisotropy experiments provide detailed information on the local microviscosity. C153 experiences a fourfold increase in reorientation time and hence microviscosity with increasing temperature through the microphase transition from unimers to micelles. C102 also shows an increase in microviscosity with temperature but smaller in magnitude and with the microphase transition shifted to higher temperature relative to C153. C343- shows only a slight sensitivity to the microphase transition. For any of the three coumarin probes, fluorescence anisotropies do not show any correlation with the microphase transition to form cubic hydrogels.  相似文献   

17.
In this work, we aimed to study the association and interaction behavior of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block copolymers grafted with poly(vinylpyrrolidone). Critical micellization concentrations were determined using fluorescent probes (pyrene) and critical micellization temperatures characterizing temperature-dependent transitions from monomers to multimolecular micelles were measured. The thermal responsiveness of the copolymer is not affected by the grafting. The hydrodynamic radius of the graft copolymer micelles is found to be greater than that of the original copolymer micelles. The graft copolymer is found to form anisotropic aggregates. The structure of the graft copolymer micelles is less disrupted by the anionic surfactant sodium dodecyl sulfate, compared to the ungraft copolymer.  相似文献   

18.
Interactions between a high molecular weight poly(ethylene oxide) (PEO) and the anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in aqueous solutions were investigated by shear and extensional rheometry. Results for mixtures between PEO and sodium dodecyl sulfate (SDS) are also presented for comparison purposes. Addition of anionic surfactants to PEO solutions above the critical aggregation concentration (CAC), at which micellar aggregates attach to the polymer chain, results in an increase in shear viscosity due to PEO coil expansion, and a strengthening of interchain interactions. In extensional flows, these interactions result in a decrease of the critical shear rate for the onset of the characteristic extension thickening of the PEO solutions that is due to transient entanglements of polymer molecules. The relaxation times associated with these transient entanglements are not directly proportional to the shear viscosity of the solutions, but rather vary more rapidly with surfactant concentration. In the presence of an electrolyte, coil contraction results in lower shear viscosities and a decrease in the extension thickening effects at surfactant concentrations just beyond the CAC. The relaxation times associated with transient entanglement reach a minimum at the same surfactant concentration as the shear viscosity, which indicates that coil contraction is responsible for the observed effects in both types of flow. However, the increase in extensional-flow entanglement relaxation times is much more abrupt than the decrease in shear viscosity. All these results point to a greater sensitivity of extensional flows on the molecular conformation of PEO/surfactant complexes.  相似文献   

19.
The micropolarities of the reverse micelle (RM) interior of nonionic poly(ethylene oxide) surfactants of the alkyl ether type (poly(ethylene oxide)[4] lauryl ether (C12E4, Brij 30)), alkyl-aryl ethers (poly(ethylene oxide)[4] nonylphenyl ether (C9PhiE4), poly(ethylene oxide)[5] nonylphenyl ether (C9PhiE5), and poly(ethylene oxide)[5] octylphenyl ether (C8PhiE5)), and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers (Pluronics P123, F127) were investigated as a function of the water content by applying the absorption probe technique, using 4-nitropyridine-N-oxide (NP) as a probe. The change in the micellar aggregate micropolarity in different solvents (cyclohexane, decane, n-butanol, and n-butyl acetate) at various water contents has been investigated. The research was focused on the determination of the effects of surfactant structure and solvent type on the hydration degrees of the PEO chains in the region at the core limit, where the NP probe was located. All results regarding the polarities in RM and PEO/water calibration mixtures have been expressed in terms of Kosower's Z values, using the linear dependence of E(NP) on Kosower's Z. The PPO/butanol mixtures have also been used for RM in butanol as a reference system. The data revealed that local polarity in RM is dependent on the surfactant type, block copolymer composition, solvent nature, and water content. At the same water content, the results clearly indicate a lower hydration degree of triblock copolymers, as compared to the surfactants of the alkyl ether and alkyl-aryl ether type, but for P123 and F127 Pluronics in n-butanol the hydration is higher owing to the behavior of butanol as cosurfactant and to its hydration.  相似文献   

20.
The aggregation behavior of a novel class of surfactants, p-n-alkylbenzamidinium chlorides, has been investigated. The thermodynamics of aggregation of p-n-decylbenzamidinium chloride mixed with cationic and anionic cosurfactants has been studied using isothermal titration calorimetry. For mixtures of p-n-decylbenzamidinium chloride with n-alkyltrimethylammonium chlorides, the aggregation process is enthalpically more favorable than for the pure n-alkyltrimethylammonium chlorides, probably caused by diminished headgroup repulsion due to charge delocalization in the amidinium headgroup. A critical aggregation concentration between 3 and 4 mM has been extrapolated for p-n-decylbenzamidinium chloride at 40 degrees C, around two times lower than that of similar surfactants without charge delocalization in the headgroup and well comparable to that of similar surfactants with charge delocalization in the headgroup. In mixtures of p-n-decylbenzamidinium chloride with either sodium n-alkylsulfates or sodium dodecylbenzenesulfonate, evidence is found for the formation of bilayer aggregates by the pseudo-double-tailed catanionic surfactants composed of p-n-decylbenzamidinium and the anionic surfactant. These aggregates are solubilized to mixed micelles by excess free anionic surfactant at the measured critical aggregation concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号