首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The isomerization mechanisms of propene oxide over H-ZSM-5 zeolite have been investigated via the utilization of 5T and 46T cluster models calculated by the B3LYP/6-31G(d,p) and the ONIOM(B3LYP/6-31G(d,p):UFF) methods, respectively. The reactions are considered to proceed through a stepwise mechanism: (1) the epoxide ring protonation, and concurrently the ring-opening, and (2) the 1,2-hydride shift forming the adsorbed carbonyl compound. Because of the asymmetric structure of propene oxide, two different C-O bonds (more or less substituted carbon atom sides) can be broken leading to two different types of products, propanal and propanone. The ring-opening step of these mechanisms is found to be the rate-determining step with an activation barrier of 38.5 kcal/mol for the propanal and of 42.4 kcal/mol for the propanone. Therefore, the propanal is predicted to be the main product for this reaction.  相似文献   

2.
A chromatographic quantification method with two different mobile phases (elution conditions 1 and 2) was developed to determine carbonyl compounds (CCs) in air samples collected from charcoal production workplaces, using C18 cartridges coated with 2,4-dinitrophenylhydrazine (DNPHi). Several 2,4-dinitrophenylhydrazones (DNPHo) were separated and quantified using an HPLC system and UV detection. In 16 min, elution condition 1 successfully separated and quantified the DNPHo of 14 CC including acetaldehyde, acrolein, formaldehyde, and furfural, and estimated the sum of C4 isomers, butanal-isobutanal-butanone. This elution condition was able to resolve the pairs acrolein/furfural and propanone/propanal, which have been cited in the literature as difficult mixtures to be separated. The elution condition 2 allowed separation and quantification, in less than 30 min, of 13 out of the 17 CC listed above. This elution condition was also able to separate propanone from propanal and butanone from the other components of the C4 mixture. When the two mobile phases were used together, they allowed confirmation of the presence of the DNPHo in the real samples. Thus, both elution conditions have been shown to be appropriate to determine CC, in personal and stationary samples, collected in charcoal production plants.  相似文献   

3.
The hydronium ion-catalyzed hydrolyses of 5-methoxyindene 1,2-oxide and of 6-methoxy-1,2,3,4-tetrohydronaphthalene-1,2-epoxide were each found to yield 75-80% of cis diol and only 20-25% of trans diol as hydrolysis products. The relative stabilities of the cis and trans diols in each system were determined by treating either cis or trans diols with perchloric acid in water solutions and following the approach to an equilibrium cis/trans mixture as a function of time. These studies establish that the trans diol in each system is more stable than the corresponding cis diol. Thus, acid-catalyzed hydrolysis of each epoxide, which proceeds via a carbocation intermediate, yields the less stable cis diol as the major product. Transition-state effects, presumably of a hydrogen-bonding nature, selectively stabilize the transition state for attack of water on the intermediate 2-hydroxy-1-indanyl carbocation leading to the less stable cis diol in this system. Transition-state effects must also be responsible for formation of the less stable cis diol as the major product in the acid-catalyzed hydrolysis of 5-methoxy-1,2,3,4-tetrahydronaphthalene 1,2-epoxide. However, in this system steric effects at the transition state may be more important than hydrogen bonding in determining the cis/trans diol product ratio. The synthesis of 5-methoxyindene 1,2-oxide and a study of its rate of reaction as a function of pH in water and dioxane-water solutions are reported. Both an acid-catalyzed reaction leading to only diol products and a pH-independent reaction yielding 71% of 5-methoxy-2-indanone and 29% of diols are observed; the half-life of its pH-independent reaction in water is only 2.4 s.  相似文献   

4.
The Baeyer-Villiger (B-V) reactions of 3,4-dimethoxy acetophenone (DMOAP), 4-methyl acetophenone (MAP), and acetophenone (AP) with performic acid (PFA) in formic acid (FA) solvent have been studied by density functional theory (DFT) method. The noncatalyzed and the formic acid-catalyzed reaction paths have been calculated at the MPWB1K/6-311++G(d,p)-IEF-PCM// MPWB1K/6-311G(d,p) level of theory. On the basis of the calculations, the attack of peracid to the carbonyl carbon is rate-determining in both the noncatalyzed and acid-catalyzed paths. The selective oxidation of 3,4-dimethoxy acetophenone and 4-methyl acetophenone by performic acid into aromatic esters have been experimentally investigated. The kinetic rate constants were obtained in the temperature range of 303 to 323 K. The selectivity of product was also explained by the NBO electric charge analysis. The calculated activation energy barriers of the B-V reaction of DMOAP and MAP were in good agreement with those of experiment.  相似文献   

5.
Positive effect of raising the pressure and water content in the reaction mixture in the oxidative conversion of propylene into acetone on a V2O5/TiO2 catalyst was observed. It was shown that the reaction occurs via intermediate formation of isopropanol, which id produced in situ as a result of the acid-catalyzed hydration of propylene and, under certain conditions, may be the main product.  相似文献   

6.
The rates and products from the acid-catalyzed and the pH-independent reactions of two diastereomeric 6-methoxy-trans-1,2,3,4,4a,10a-hexahydrophenanthrene 9,10-oxides (5b and 7b), along with their cis and trans chlorohydrins, have been determined in dioxane/water solutions. The mechanisms of the acid-catalyzed hydrolysis of 5b and 7b involve rate-limiting formation of benzylic carbocations (6b and 8b), which have sufficient lifetimes to be trapped by azide ion. Each carbocation is stabilized by the 6-methoxy group and held in single conformation by the adjacent trans-fused cyclohexane ring. The stereochemistry of the attack of water on each carbocation is independent of whether the precursor is an epoxide, a cis chlorohydrin, or a trans chlorohydrin, and the major diol hydrolysis product from each compound results from the axial attack of a solvent molecule on the carbocation intermediate. The hydrolysis of the trans chlorohydrin formed from the reaction of 5b with HCl exhibits a common ion rate depression. The major product from the pH-independent reaction of 5b is a trans diol, and the major product from the pH-independent reaction of 7b is an isomeric ketone. The rate of the pH-independent reaction of 7b is >10(4) times faster than that of 5b.  相似文献   

7.
催化剂对CaO固硫反应动力学的影响   总被引:14,自引:0,他引:14  
武增华  寇鹏  邱新平  薛方渝  陈昌和 《化学学报》2000,58(11):1316-1321
提高CaO的固硫率是对煤炭燃烧污染防治的研究热点。本研究探索用催化剂提高CaO固硫率的可行性及其对固硫反应动力学的影响。用热天平测试了在CaO中添加不同催化剂的固硫反应的进程,并采用等效粒子模型处理实验数据,计算了表面化学反应控制阶段及产物层扩散控制阶段的动力学参数。实验表明,CaO固硫反应初期为表面化学反应控制阶段,后期转为产物层扩散控制阶段。以碱金属的盐类为催化剂,它们均能使固硫反应前期的化学反应控制阶段的反应活化能下降,并按Li,Na,K,Cs的顺序依次递减,而碱金属盐的负离子主要影响产物层扩散阶段的固硫反应。  相似文献   

8.
Several models have been proposed to describe the carbon number product distribution and mechanism in Fischer-Tropsch synthesis (FTS). However, these models have not fully explained the product distribution and mechanism owing to the wide range and complexity of hydrocarbons in FTS. This study was conducted based on the Yao and Anderson-Schulz-Flory (ASF) carbon number product distribution models for light (C1–C6) hydrocarbon products of a Fe/Al2O3 catalyst. The product distribution based on the molar ratio of olefin to paraffin (O/P) and the neighboring olefins was also studied in order to better understand the mechanism in FTS and C2 olefin deviation during FTS.Two sets of experiments (A and B) with different reaction conditions were conducted in microtubular fixed-bed reactors on the Fe/Al2O3 catalyst for 2249 h and 360 h, respectively. We found that the α values from the Yao and ASF carbon number product distribution models are relatively similar. The α values from the Yao carbon number product distribution plots are relatively constant, irrespective of the reaction conditions.Interestingly, it was also found that the secondary reactions of the C2 olefin by re-adsorption to produce paraffins and long-chain olefins are dependent on the CO conversion and the reaction temperature during the FTS. Also, the product distribution of the neighboring olefins during the reduction condition gave a similar trend to what was observed for other reaction conditions. This result confirmed what was observed in the Yao and ASF carbon number product distribution of the olefins.  相似文献   

9.
Summary Nanosized MnOx-MOy(M=Cu, V)-promoted sulfated yttria-stabilized zirconia-titania catalysts were synthesized and studied for propane activation and conversion. The derived catalysts are amorphous in general and the primary particle size of all the samples is ca. 10-30 nm. Elemental distributions are rather uniform throughout the catalysts. In a mixture of C3H8/He (v/v = 9.4/90.6) or C3H8/O2/He (v/v/v = 12.5/6.3/81.2) and within the temperature range of 350-550°C, two major types of reactions occurred on the catalysts. One is oxidation yielding propenal, propanone, propanal as well as propenoic and propanoic acids; the other is carbon-carbon bond formation generating products such as butadiene and cyclopentadiene.</o:p>  相似文献   

10.
Magnesium organo silicates (MOSs; synthetic talc) as such and with amine surface functionalities were synthesized by sol–gel method under non-hydrothermal conditions and characterized by spectroscopic techniques. The synthesized talc samples were observed to be thermally stable up to 200 °C in nitrogen atmosphere and used as catalysts for condensation of aldehydes and ketones. Application of synthetic talc as a solid base catalyst for condensation of aldehydes and ketones is being reported for the first time. The effect of solvent, solvent to reactant molar ratio, amount of catalyst and temperature was studied in detail for self-condensation of propanal. High conversion (86%) of propanal with 95% selectivity of 2-methylpentenal was achieved using dimethyl sulphoxide as a solvent. The kinetic study was carried out for the condensation of propanal catalyzed by amine functionalized MOS under optimum reaction conditions. Catalyst was re-used without significant loss in activity up to three cycles.  相似文献   

11.
该文以温和酸催化条件下的木质素磺酸盐解聚产物为研究对象,建立系统分离和分析测试木质素磺酸盐解聚后获得的低分子酚类产物的方法。选用4根油溶性的ACQUITY APC XT小孔径刚性填料色谱柱串联,在高分辨紫外检测器条件下,采用超高效凝胶渗透色谱(APC)对解聚产物实现了高效分离,获得了高灵敏度的木质素基酚类产物的相对分子质量及其分布色谱信息。探讨了反应温度、时间和催化剂浓度等对酸催化木质素磺酸盐解聚行为的影响,结果表明,对于木酚比(木质素:苯酚)为25%(质量分数)的木质素磺酸盐解聚体系,在催化剂和木质素物质的量比为2.334、130℃酸催化反应60 min时,获得了解聚效率高达80%以上的木质素基酚类产物,解聚获得的产物相对峰高分子质量(Mp)组成均分布在720、490和260 Da 3个低聚物区间,均具有很窄的分子质量分布指数(接近1)。由此可以初步推断,木质素磺酸盐在该研究采用的温和酸催化条件下,催化反应机理不受反应时间、温度以及催化剂浓度的影响,具有特定的解聚途径。  相似文献   

12.
In this work, a series of BiOBr nanoplates with oxygen vacancies (OVs) were synthesized by a solvothermal method using a water/ethylene glycol solution. The number of OVs and facets of BiOBr were tuned by changing the water/ethylene glycol ratio. Although the role of OVs in photocatalysis has been investigated, the underlying mechanisms of charge transfer and reactant activation remain unknown. To unravel the effect of OVs on the reactant activation and photocatalytic NO oxidation process, in situ diffuse reflectance infrared Fourier transform spectroscopy, so-called DRIFTS, and theoretical calculations were performed and their results combined. The photocatalytic efficiency of the as-prepared BiOBr was significantly increased by increasing the amount of OVs. The oxygen vacancies had several effects on the photocatalysts, including the introduction of intermediate energy levels that enhanced light absorption, promoted electron transfer, acted as active sites for catalytic reaction and the activation of oxygen molecules, and facilitated the conversion of the intermediate products to the final product, thus increasing the overall visible light photocatalysis efficiency. The present work provides new insights into the understanding of the role of OVs in photocatalysts and the mechanism of photocatalytic NO oxidation.  相似文献   

13.
Reaction kinetics were studied to quantify the effects of polar aprotic organic solvents on the acid‐catalyzed conversion of xylose into furfural. A solvent of particular importance is γ‐valerolactone (GVL), which leads to significant increases in reaction rates compared to water in addition to increased product selectivity. GVL has similar effects on the kinetics for the dehydration of 1,2‐propanediol to propanal and for the hydrolysis of cellobiose to glucose. Based on results obtained for homogeneous Brønsted acid catalysts that span a range of pKa values, we suggest that an aprotic organic solvent affects the reaction kinetics by changing the stabilization of the acidic proton relative to the protonated transition state. This same behavior is displayed by strong solid Brønsted acid catalysts, such as H‐mordenite and H‐beta.  相似文献   

14.

Water activation of the enzyme (an esterase of Mucor miehei) is studied during oleic acid/1-decanol esterification with or without solvent. The activation is rapid, but not instantaneous. Reaction water and water added before the beginning of the reaction do not have the same influence. The activation of the enzyme is effected by its swelling with water. When the initial quantity of water is sufficient, the reaction order is zero. But from a certain conversion, the rate decreases very suddenly or very slowly. This observation is attributed to the partitioning of an aqueous phase around the enzyme.

  相似文献   

15.
新型水溶性膦配体用于烯烃氢甲酰化反应的研究   总被引:4,自引:0,他引:4  
介绍了 4个水溶性膦配体的合成过程 ,并研究了 4个配体分别与乙酰丙酮二羰基铑构成的催化剂在水 -有机两相体系中 ,在不同条件下对 1-庚烯、苯乙烯和丙烯酸甲酯的氢甲酰化反应的催化性能 .结果表明 ,这 4个配体在水中的溶解性很好 ,并且有一定的稳定性 ;在温度为 5 0℃、压力为 5 .0 MPa、P/ Rh为 8、 [Rh]为 1.6×10 - 3mol/ L的条件下 ,苯乙烯的转化率可达 10 0 %、产物的 n/ i为 9.2 ;在相同条件下 ,1-庚烯的转化率可达99.3%、 n/ i为 2 .2 ;丙烯酸甲酯的转化率可达 92 .7%、 n/ i为 6 .3;α-甲基丙烯酸甲酯的转化率可达 73.0 %、 n/ i为 5 .5  相似文献   

16.
We use the conversion of protonated glycerol to acrolein for a case study of the mechanism of acid-catalyzed dehydration of polyols in aqueous environments. We employ hybrid Quamtum Mechanics/Molecular Mechanics Molecular Dynamics (QM/MM MD) simulations with biased sampling and perform free energy calculations for the elementary steps of the reaction. We investigate the effects of solvent dynamics and in particular the role of quantum mechanical water in the dehydration mechanism. We present results supporting a mechanism that proceeds via water-mediated proton transfers and thus through an enol intermediate. We find that the first dehydration may take place by two, low-energy pathways requiring, respectively, 20.9 and 18.8 kcal/mol of activation free energy. The second dehydration requires 19.9 kcal/mol of activation free energy while for the overall reaction we compute a free energy change of -8 kcal/mol.  相似文献   

17.
Density functional calculations have been used to study the mechanism of 1-phenyl-1-(3-pyridyl)ethene hydroformylation using rhodium catalyst.Our calculations reveal that the rate-determining step is the oxidative addition of hydrogen molecule and the preferred path is the one involving ts3ans for the lowest activation free-energy (ΔrGa),63.8 kJ/mol.This reaction is demonstrated to be strong exothermic by-96.6 kJ/mol of branched products and-98.2 kJ/mol of linear products.And the predominant product is the linear 3-phenyl-3-(3-pyridal)propanal (pr-ns) determined by both thermodynamics and kinetics.These results are in agreement with the practicality experimental studies.  相似文献   

18.
Oxidation of dilute methane in oxygen containing mixtures by atmospheric pressure dielectric barrier discharge at moderate temperature (below 150°C) has been studied with regard to the effect of water vapor. First, the impact of water vapor on methane conversion was studied in nitrogen. In dry nitrogen, methane was converted into hydrogen cyanide and hydrogen in the absence of oxidant. When water was added, it both acted as a scavenger in competition with methane for reactive nitrogen species and changed the reaction product speciation from HCN to carbon monoxide and carbon dioxide. The addition of water also led to the formation of hydrogen and nitrogen oxides. In the presence of oxygen, the addition of 1% water vapor enhanced methane conversion. Increasing water vapor content above 1% had a slight positive effect on methane conversion, and was found to enhance selectivity of the reaction products toward carbon dioxide over carbon monoxide.  相似文献   

19.
The structure of neohobartine ( 3 ), a side product of the acid-catalyzed conversion of (?)-hobartine ( 1 ) into (+)-aristoteline ( 2 ), has been elucidated by spectroscopic methods. Possible mechanistic pathways leading to its 1-azaaadamantane skeleton are discussed.  相似文献   

20.
The concept of variable activation energy in solid-state kinetics under nonisothermal conditions has been suffering from doubt and controversy. Rate equations of nonisothermal kinetics of solid decomposition, which involve the factors of thermodynamics conditions, pressure of gaseous product, structure parameters of solid, and/or extent of conversion, are derived from the models of the interface reaction, the diffusion of gaseous product, and the nuclei growth of the solid product, respectively. The definition of the validity function in the rate equations represents the influence of the factors on the reaction rate. A function of variable activation energy depending on the validity function is also developed. The changing trend and degree of activation energy are extrapolated from the function of variable activation energy and based on the data of nonisothermal thermal decomposition of calcium carbonate. It is shown that the concept of variable activation energy is meaningfully applicable to solid-state reactions under nonisothermal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号