首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Saw dust was gasified at combined and separated impact of the heater and arc discharge on the raw material. It is shown that because of combustion of a part of produced syngas in the heater the raw material can be gasified with power inputs reduced by 20–25 % in comparison with plasma gasification. Data on parameters of combustion and detonation of syngas mixtures with oxygen and air at a change in the ratio between fuel components CO and H2 and between fuel and oxidizer are shown for the first time.  相似文献   

2.
P. Shuk  E. Bailey  J. Zosel  U. Guth 《Ionics》2009,15(2):131-138
Mixed potential solid electrolyte CO sensors with sensing electrodes based on composite with various semiconducting oxides were extensively studied in the temperature range 500–650 °C for sensitivity, stability and cross-sensitivity besides CO to other combustion components like CO2, H2O, O2, and SO2. The highest CO sensitivity was found for the CO sensor with composite electrode based on Au/Ga2O3 showing also good reproducibility and stability in hazardous combustion environment. CO sensor response behavior in non equilibrated oxygen containing gas mixtures is mainly determined by the catalytic activity of the measuring electrode and depends strongly on preparation and measuring conditions. Mixed oxides based on doped chromites show only a little sensitivity to CO. CO sensor based on Au/Ga2O3 composite electrodes was showing good CO selectivity in the presence of other combustion gas species and finally was tested in combustion environment at power plant. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.  相似文献   

3.
When using coal-derived syngas or coal as fuel in chemical looping combustion (CLC), CO as a representative pyrolysis/gasification product and H2S as the main sulfurous gas coexist in fuel reactor. Either CO or H2S can absorb on the surface of CuO (the active component of Cu-based oxygen carriers), and reactions will occur among them. In this study, density functional theory (DFT) calculations are conducted to investigate the interaction among H2S, CO, and CuO, including: the reaction between CO and H2S over CuO particle, the influence of CO on the H2S dissociation and further reaction process, and the impact of H2S dissociation products on CO oxidation. Firstly, the co-adsorption results suggest that H2S might directly react with CO to produce COS via the Eley–Rideal mechanism, while CO prefers to react with HS* or S* via the Langmuir–Hinshelwood mechanism. This means that the reaction mechanisms between CO and H2S will change as the H2S dissociation proceeds, which has already been forecasted by the co-adsorption energies and verified by all of potential Eley–Rideal and Langmuir–Hinshelwood reaction pathways. Then, the influence of CO on the H2S dissociation process is examined, and it is noted that the presence of CO greatly limits the dissociation of H2S due to the increased energy barrier of the rate-determining dehydrogenation step. Furthermore, the impact of H2S dissociation products on CO oxidation by CuO is also investigated. The presence of H2S and S* significantly supresses the CO oxidation activity, while the presence of HS* slightly promotes the CO oxidation activity. Finally, the complete interaction mechanisms among H2S, CO, and CuO are concluded. It should be noted that COS will be inevitably produced via the Langmuir–Hinshelwood reaction between surface S* and CO*, which is prior to H2O generation and subsequent sulfidation reaction.  相似文献   

4.
The hetero-/homogeneous combustion of fuel-lean CO/H2/O2/N2 mixtures over platinum is investigated at pressures up to 5 bar, inlet temperatures (TIN) up to 874 K, and a constant CO:H2 molar ratio of 2:1. Experiments are performed in an optically accessible channel-flow catalytic reactor and involve planar laser induced fluorescence (LIF) of the OH radical for the assessment of homogeneous (gas-phase) ignition and 1-D Raman measurements of major gas-phase species concentrations over the catalyst boundary layer for the evaluation of the heterogeneous (catalytic) processes. Simulations are carried out with an elliptic 2-D model that includes detailed heterogeneous and homogeneous chemical reaction schemes. The predictions reproduce the Raman-measured catalytic CO and H2 consumption, and it is further shown that for wall temperatures in the range 975 ? Tw ? 1165 K the heterogeneous pathways of CO and H2 are largely decoupled. However, for wall temperatures below a limiting value of 710–720 K and for the range of pressures and mixture preheats investigated, CO(s) blockage of the surface inhibits the catalytic conversion of both fuel components. The homogeneous ignition distance is well-reproduced by the model for TIN > 426 K, but it is modestly overpredicted at lower TIN. Possible reasons for these modest differences can be the values of third body efficiencies in the gas-phase reaction mechanism. The sensitivity of homogeneous ignition distance on the catalytic reactions is weak, while the H2/O2 subset of the CO/H2/O2 gaseous reaction mechanism controls the onset of homogeneous ignition. Pure hydrogen hetero-/homogeneous combustion results in flames established very close to the catalytic walls. However, in the presence of CO the gaseous combustion of hydrogen extends well-inside the channel core, thus allowing homogeneous consumption of H2 at considerably shorter reactor lengths. Finally, implications of the above findings for the design of syngas-based catalytic reactors for power generation systems are discussed.  相似文献   

5.
Transverse wave generation mechanism in rotating detonation   总被引:2,自引:0,他引:2  
Detonation engines are expected to be included in a number of aerospace thrusters in the future. Several types of detonation engines are currently under examination, including the rotating detonation engine (RDE). Although the RDE has been explored experimentally, its rotating detonation propagation mechanism is not well understood. This paper clarifies the detonation mechanism and dynamics of the RDE by 2D and 3D simulation using compressible Euler equations with a full chemical reaction mechanism of H2/O2 and H2/Air, especially from the triple-point and transverse detonation points of view. A total variation diminishing (TVD) scheme is used for the mixture of H2/Air, and an advection upwind splitting method difference vector (AUSMDV) scheme is used for the mixture of H2/O2. The use of an AUSMDV scheme provides a much clearer detonation structure than does the TVD scheme. We focus on the complex interaction mechanism of the detonation front and burned mixture gases. We found out that at this interaction point, an unreacted gas pocket appears and ignites periodically to generate transverse waves at the detonation front and maintain detonation propagation.  相似文献   

6.
Ozone is one of the strongest oxidizers and can be used to enhance detonation. Detonation enhancement by ozone addition is usually attributed to the ozone decomposition reaction which produces reactive atomic oxygen and thereby accelerates the chain branching reaction. Recently, ozonolysis reaction has been found to be another mechanism to enhance combustion for unsaturated hydrocarbons at low temperatures. In this study, the effects of ozone addition and ozonolysis reaction on steady detonation structure and transient detonation initiation and propagation processes in C2H4/O2/O3/Ar mixtures are examined through simulations considering detailed chemistry. Specifically, the homogeneous ignition process, the ZND detonation structure, the transient direct detonation initiation, and pulsating instability of one-dimensional detonation propagation are investigated. It is found that the homogenous ignition process consists of two stages and the first stage is caused by ozonolysis reactions which consume O3 and produces CH2O as well as H and OH radicals. The ozonolysis reaction and ozone decomposition reaction can both reduce the induction length though they have little influence on the Chapman–Jouguet (CJ) detonation speed. The supercritical, critical and subcritical regimes for direct detonation initiation are identified by continuously decreasing the initiation energy or changing the amount of ozone addition. It is found that direct detonation initiation becomes easier at larger amount of ozone addition and/or larger reaction progress variable. This is interpreted based on the change of the induction length of the ZND detonation structure. Furthermore, it is demonstrated that the ozonolysis reaction can reduce pulsating instability and make the one-dimensional detonation propagation more stable. This is mainly due to the reduction in activation energy caused by ozone addition and/or ozonolysis reaction. This work shows that both ozone decomposition reaction and ozonolysis reaction can enhance detonation for unsaturated hydrocarbon fuels.  相似文献   

7.
Relevant to High-Temperature Air Combustion, an experiment has been conducted to study carbon combustion in the high-temperature oxidizer-flow, by use of a graphite rod set in the forward stagnation field. Effects of humid air and O2-reduced oxidizer have been examined, after re-confirming that the combustion rate in the high-temperature oxidizer-flow is enhanced, because of elevated transport properties when the mass flow rate of oxidizer is the same, and that it is suppressed, because of reduced mass transfer rates through the thickened boundary layer when the velocity gradient is the same. It is found that high H2O mass-fraction is favorable for the enhancement of combustion rate at high surface temperatures (>2000 K), because of its participation in the surface C–H2O reaction, while it is not the case at medium surface temperatures (1400–1700 K), because of the suppressing effect, caused by the establishment of CO flame. As for O2 and CO2 concentrations in the high-temperature oxidizer-flow, it is found that O2 mass-fraction can be reduced without reducing combustion rate in the room-temperature airflow, and that it can further be reduced in existence of enough CO2 that can be an oxidizer in carbon combustion. Theoretical works have also been conducted for the system with three surface reactions and two global gas-phase reactions. It is found that the Frozen mode without CO flame and the Flame-detached mode with infinitely fast gas-phase reaction can fairly represents combustion behavior before and after the establishment of CO flame, respectively, as far as the trend and the approximate magnitude are concerned. It is also shown that a new mode with suppressing H2 ejection from the surface can fairly represent the combustion rate, experimentally obtained in humid airflow with relatively low velocity gradient when the surface temperature is high.  相似文献   

8.
Calculations of the transition frequencies and absorption coefficients of microwave rotational transitions are given for a number of atmospheric pollutants and constituents. New measurements of the absorption coefficients are made in the vicinity of 70 GHz. The apparatus used in these measurements is briefly described. The calculated absorption coefficients are compared with these measurements and with existing measurements at other frequencies where available. Transitions with frequencies up to about 200 GHz are considered for the molecules and radicals SO2, O3, H2O, NO2, H2S, H2CO, NH3, CO, OCS, N2O, NO, OH, O2, SO. Also discussed are criteria for the selection of appropriate transitions for the development of high sensitivity monitors to be used in air pollution and combustion research.  相似文献   

9.
This study has been mainly motivated to assess computationally and theoretically the conditional moment closure (CMC) model and the transient flamelet model for the simulation of turbulent nonpremixed flames. These two turbulent combustion models are implemented into the unstructured grid finite volume method that efficiently handles physically and geometrically complex turbulent reacting flows. Moreover, the parallel algorithm has been implemented to improve computational efficiency as well as to reduce the memory load of the CMC procedure. Example cases include two turbulent CO/H2/N2 jet flames having different flow timescales and the turbulent nonpremixed H2/CO flame stabilized on an axisymmetric bluff-body burner. The Lagrangian flamelet model and the simplified CMC formulation are applied to the strongly parabolic jet flame calculation. On the other hand, the Eulerian particle flamelet model and full conservative CMC formulation are employed for the bluff-body flame with flow recirculation. Based on the numerical results, a detailed discussion is given for the comparative performances of the two combustion models in terms of the flame structure and NO x formation characteristics.  相似文献   

10.
The effect of gasification reactions on biomass char conversion under pulverized fuel combustion conditions was studied by single particle experiments and modelling. Experiments of pine and beech wood char conversion were carried out in a single particle combustor under conditions of 1473-1723 K, 0.0-10.5% O2, and 25-42% H2O. A comprehensive progressive char conversion model, including heterogeneous reactions (char oxidation and char gasification with CO2 and H2O), homogeneous reactions (CO oxidation, water-gas shift reaction, and H2 oxidation) in the particle boundary layer, particle shrinkage, and external and internal heat and mass transfer, was developed. The modelling results are in good agreement with both experimental char conversion time and particle size evolution in the presence of oxygen, while larger deviations are found for the gasification experiments. The modelling results show that the char oxidation is limited by mass transfer, while the char gasification is controlled by both mass transfer and gasification kinetics at the investigated conditions. A sensitivity analysis shows that the CO oxidation in the boundary layer and the gasification kinetics influence significantly the char conversion time, while the water-gas shift reaction and H2 oxidation have only a small effect. Analysis of the sensitive parameters on the char conversion process under a typical pulverized biomass combustion condition (4% O2, 13% CO2, 13% H2O), shows that the char gasification reactions contribute significantly to char conversion, especially for millimeter-sized biomass char particles at high temperatures.  相似文献   

11.
The catalytic-rich/gaseous-lean (R/L) combustion concept was investigated experimentally and numerically for syngas fuels with H2:CO volumetric ratios 1:0, 4:1 and 1:2, catalytic-rich stoichiometries φrich = 2–10 (including operation without air), pressure of 8 bar and air preheat of 673 K. Experiments were performed in a subscale R/L burner with optical access to both catalytic-rich and gaseous-lean stages. OH-PLIF monitored the turbulent combustion in the gaseous-lean stage, OH*-chemiluminescence assessed the propensity for homogeneous ignition in the catalytic-rich stage, and exhaust gas analysis provided the NOx and CO emissions. Two-dimensional simulations were carried out for both stages, while a 1-D opposed-jet code modeled the NOx emissions. The exothermicity of the heterogeneous reactions promoted homogeneous ignition and flame anchoring in the upstream parts of the catalytic-rich stage and allowed for complete consumption of the deficient O2 reactant, a process that could not be achieved by the catalytic pathway alone due to transport limitations. Homogeneous combustion in the catalytic-rich stage was beneficial for attaining the highest possible fuel pre-conversion. The catalyst not only initiated gaseous combustion but also mitigated potential NOx emissions from the catalytic-rich stage at the highest pre-conversions (lowest φrich) and highest CO-content mixtures. Two-sided diffusion flames were established in the gaseous-lean stage due to the recirculation of O2-rich combustion products, which was advantageous for the burner compactness. It was shown that cardinal to the R/L concept was the fact that a decreasing φrich led to an increased heat transfer from the catalytic-rich stage to the bypass air, which reduced the enthalpy in the fuel stream of the gaseous-lean stage and thus lowered the peak flame temperatures (by 400 K for H2:CO = 1:0). The reduction in flame temperatures with decreasing φrich led to a six-fold drop in NOx emissions, while CO emissions were less than 5 ppmv.  相似文献   

12.
The chemical and thermal structures of flame of composite pseudo-propellants based on cyclic nitramines (HMX, RDX) and azide polymers (GAP and BAMO–AMMO copolymer) were investigated at a pressure of 1.0 MPa by molecular beam mass spectrometry and a microthermocouple technique. Eleven species H2, H2O, HCN, CO, CO2, N2, N2O, CH2O, NO, NO2, and nitramine vapor (RDXv or HMXv), were identified, and their concentration profiles were measured in HMX/GAP and RDX/GAP pseudo-propellant flames at a pressure of 1 MPa. Two main zones of chemical reactions in the flame of nitramine/GAP pseudo-propellants were found. In the first, narrow, zone 0.1 mm wide (adjacent to the burning surface), complete consumption of nitramine vapor and NO2 with the formation of NO, HCN, CO, H2, and N2 occurs. In the second, wider high-temperature zone, oxidation of HCN and CH2O by NO and N2O with the subsequent formation of CO, H2, and N2 takes place. The leading reactions in the high-temperature zone of flame of nitramine/GAP pseudo-propellants are the same as in the case of pure nitramines. In the case of nitramine/BAMO–AMMO pseudo-propellants a presence of carbonaceous particles on the burning surface did not allow us to analyze the zone adjacent to the burning surface, therefore only one flame zone was found. Temperature profiles in the combustion wave of nitramine/azide polymer pseudo-propellants were measured at 1 MPa. The data obtained can be used to develop and validate a self-sustain combustion model for pseudo-propellants based on nitramines and azide polymers.  相似文献   

13.
氢气-空气混合物中瞬态爆轰过程的二维数值模拟   总被引:12,自引:1,他引:11       下载免费PDF全文
 对高温火团引发的氢气-空气混合气的瞬态爆轰过程进行了二维数值模拟,考虑了H2-O2-N2的详细化学反应动力学机理,该机理包含了19个基元反应和9种组分。采用分裂格式处理带化学反应的Euler方程,其中使用全耦合的TVD格式求解流场,使用基于Gear算法的微分方程解法器求解化学反应过程。计算结果表明:在H2∶O2∶N2=0.4∶0.4∶0.2(摩尔比)的混合气中,高温气团初始温度为T/T0=5.3时可诱导爆轰,爆轰波以2 300 m/s的速度传播,同时爆轰波阵面在管壁会形成反射波。还对计算的爆轰波后组分的浓度和温度进行了讨论,为理解爆轰波后结构提供信息。  相似文献   

14.
15.
The internal flow structures of detonation wave were experimentally analyzed in an optically accessible hollow rotating detonation combustor with multiple chamber lengths. The cylindrical RDC has a glass chamber wall, 20 mm in diameter, which allowed us to capture the combustion self-luminescence. A chamber 70 mm in length was first tested using C2H4O2 and H2–O2 as propellants. Images with a strong self-luminescence region near the bottom were obtained, confirming the small extent of the region where most of the heat release occurs as found in our previous research. Based on the visualization experiments, we tested RDCs with shorter chamber walls of 40 and 20 mm. The detonation wave was also observed in the shorter chambers, and its velocity was not affected by the difference in chamber length. Thrust performance was also maintained compared to the longer chamber, and the short cylindrical RDC had the same specific impulse tendency as the cylindrical (hollow) or annular 70-mm chamber RDC. Finally, we calculated the pressure distributions of various chamber lengths, and found they were also consistent with the measured pressure at the bottom and exit. We concluded that the short-chamber cylindrical RDC with equal length and diameter maintained thrust performance similar to the longer annular RDC, further expanding the potential of compact RDCs.  相似文献   

16.
The combustion of nanometric aluminum (Al) powder with an oxidiser such as molybdenum trioxide (MoO3) is studied analytically. This study focuses on detonation wave models and a Chapman-Jouget detonation model provides reasonable agreement with experimentally-observed wave speeds provided that multiphase equilibrium sound speeds are applied at the downstream edge of the detonation wave. The results indicate that equilibrium sound speeds of multiphase mixtures can play a critical role in determining speeds of fast combustion waves in nanoscale Al-MoO3 powder mixtures.  相似文献   

17.
The effect of ozone and hydrogen peroxide as dopants on hydrogen-air and ethylene-air detonations was investigated with one-dimensional ZND calculations. Also, the effects of dopants were studied numerically with argon and helium as diluents with an aim to reduce the temperature of detonation products while maintaining a detonation wave of sufficient strength such that its propagation is stable near its propagation limits. The primary goal of the present investigation is to isolate the chemical kinetic effects from fluid and gas dynamic effects by altering the ignition chemistry of an unburned mixture without significantly changing its thermodynamic and physical properties. The ZND calculations demonstrate that the addition of O3 and H2O2 in small quantities will substantially reduce the induction length (Δi) and time (τi), even with higher diluent percentages of argon and helium, making it a viable solution for reducing the operating temperatures of rotating detonation engines (RDEs). The effects of O3 and H2O2 are also studied numerically at lower equivalence ratios for H2/C2H4-air detonations with an aim to reduce the post-detonation temperatures below 2000 K for its application in practical engine cycles. Also, the efficacy of CF3I, as an ignition promoter at small quantities, is studied numerically for hydrogen-air detonations, and its performance is compared with O3 and H2O2.  相似文献   

18.
The propulsive performance for an H2/O2 and H2/Air rotating detonation engine (RDE) with conic aerospike nozzle has been estimated using three-dimensional numerical simulation with detailed chemical reaction model. The present paper provides the evaluation of the specific impulse (Isp), pressure gain and the thrust coefficient for different micro-nozzle stagnation pressures and for two configurations of conic aerospike nozzle, open and choked aerospike. The simulations show that regardless of the nozzle, increase the micro-nozzles stagnation pressure increases the mass flow rate, the pre-detonation gases pressure and consequently the post-detonation pressure. This gain of pressure in the combustion chamber leads to a higher pressure thrust through the nozzle, improving the Isp. It was also found that the choked nozzle increases the chamber time-averaged static pressure by 50–60% compared with the open nozzle, inducing higher performance for the same reason explained before.  相似文献   

19.
20.
This paper constitutes an experimental and numerical study, using uncertainty analysis of the most important parameters, to evaluate the mechanism for the combustion of CO + H2 mixtures at high pressures in the range 15-50 bar and temperatures from 950 to 1100 K. Experiments were performed in a rapid compression machine. Autoignition delays were measured for stoichiometric compositions of CO + H2 containing between 0 and 80% CO in the total fuel mixture. The experimental results showed an unequivocal monotonic increase as the proportion of CO in the mixture was raised. Comparisons were made also with the measured ignition delays in mixtures of H2 with increasing dilution by N2, corresponding to the proportions of CO present. These times also increased monotonically, albeit with a greater sensitivity to the extent of dilution than those measured in the CO + H2 mixtures. By contrast, numerical simulations for the same mixtures, based on a kinetic model derived by Davis et al. displayed a qualitative discrepancy as there was virtually no sensitivity of the ignition delay to the changing ratio of CO + H2, certainly up to 80% replacement. No exceptions to this trend were found, despite tests being made using seven other kinetic models for CO + H2 combustion. Global uncertainty analyses were then applied to the Davis et al. model in order to trace the origins of this discrepancy. The analyses took into account the uncertainties in all rate parameters in the model, which is a pre-requisite for evaluation against ignition delay data. It is shown that the reaction rate constant recommended by Baulch et al. for the HO2 + CO reaction, at T ∼ 1000 K, could be up to a factor of 10 too high and that lowering this rate corrected the qualitative anomaly between experiment and numerical prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号