首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the framework of a piecewise homogeneous body model, with the use of the three-dimensional linearized theory of elastic waves in initially stressed bodies, the dynamical response of a system consisting of a prestressed covering layer and a prestressed half-plane to a moving load applied to the free face of the covering layer is investigated. Two types (complete and incomplete) of contact conditions on the interface are considered. The subsonic state is considered, and numerical results for the critical speed of the moving load are presented. The influence of problem parameters on the critical speed is analyzed. In particular, it is established that the prestressing of the covering layer and half-plane increases the critical speed. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 2, pp. 257–270, March–April, 2007.  相似文献   

2.
The stress field inside a two-dimensional arbitrary-shape elastic inclusion bonded through an interphase layer to an infinite elastic matrix subjected to uniform stresses at infinity is analytically studied using the complex variable method in elasticity. Both in-plane and anti-plane shear loading cases are considered. It is shown that the stress field within the inclusion can be uniform and hydrostatic under remote constant in-plane stresses and can be uniform under remote constant anti-plane shear stresses. Both of these uniform stress states can be achieved when the shape of the inclusion, the elastic properties of each phase, and the thickness of the interphase layer are properly designed. Possible non-elliptical shapes of inclusions with uniform hydrostatic stresses induced by in-plane loading are identified and divided into three groups. For each group, two conditions that ensure a uniform hydrostatic stress state are obtained. One condition relates the thickness of the interphase layer to elastic properties of the composite phases, while the other links the remote stresses to geometrical and material parameters of the three-phase composite. Similar conditions are analytically obtained for enabling a uniform stress state inside an arbitrary-shape inclusion in a three-phase composite loaded by remote uniform anti-plane shear stresses.  相似文献   

3.
We consider two dissimilar elastic half-planes bonded by a nonhomogeneous elastic layer in which there is one crack at the lower interface between the elastic layer and the lower half-plane and two cracks at the upper interface between the elastic layer and the upper half-plane. The stress intensity factors for these three cracks are solved for when tension is applied perpendicular to the interface cracks. The material properties of the bonding layer vary continuously between those of the lower half-plane and those of the upper half-plane. The differences in the crack surface displacements are expanded in a series of functions that are zero outside the cracks. The unknown coefficients in the series are solved by the Schmidt method so as to satisfy the conditions inside the cracks. The stress intensity factors are calculated numerically for selected crack configurations.  相似文献   

4.
Within the framework of a piecewise homogenous body model and with the use of a three-dimensional linearized theory of stability (TLTS), the local near-surface buckling of a material system consisting of a viscoelastic (elastic) half-plane, an elastic (viscoelastic) bond layer, and a viscoelastic (elastic) covering layer is investigated. A plane-strain state is considered, and it is assumed that the near-surface buckling instability is caused by the evolution of a local initial curving (imperfection) of the elastic layer with time or with an external compressive force at fixed instants of time. The equations of TLTS are obtained from the three-dimensional geometrically nonlinear equations of the theory of viscoelasticity by using the boundary-form perturbation technique. A method for solving the problems considered by employing the Laplace and Fourier transformations is developed. It is supposed that the aforementioned elastic layer has an insignificant initial local imperfection, and the stability is lost if this imperfection starts to grow infinitely. Numerical results on the critical compressive force and the critical time are presented. The influence of rheological parameters of the viscoelastic materials on the critical time is investigated. The viscoelasticity of the materials is described by the Rabotnov fractional-exponential operator. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 6, pp. 771–788, November–December, 2007.  相似文献   

5.
A generalized plane problem in the non-linear theory of elasticity is considered for a half-plane loaded on the boundary with a concentrated external force (the non-linear Flamant problem). The properties of the material of the half-plane are described by different (known) models, and each model of the non-linearly elastic material generates its own specific boundary-value problem. Analytical solutions of the problems are obtained for two models of an incompressible material: the neo-Hookean model and the Bartenev–Khazanovich model, and a model of a compressible semi-linear (harmonic) material. The dependence of the stress state as a whole on the adopted model of the material and the effect of the model of the material on the form of the stress singularity in the neighbourhood of a pole are investigated.  相似文献   

6.
Two axisymmetric problems of the indentation without friction of an elastic punch into the upper face of a layer when there is a uniform field of initial stresses in the layer are considered. The model of an isotropic incompressible non-linearly elastic material, specified by a Mooney potential, is used. Two cases are investigated: when the lower face of the layer is rigidly clamped after it is prestressed, and when the lower face of the layer is supported on a rigid base without friction after it is prestressed. It is assumed that the additional stresses due to the action of the punch on the layer are small compared with the initial stresses; this enables the problem of determining the additional stresses to be linearized. The problem is reduced to solving integral equations of the first kind with symmetrical irregular kernels relative to the pressure in the contact area. Approximate solutions of the integral equations are constructed by the method of orthogonal polynomials for large values of the parameter characterizing the relative layer thickness. The case of a punch with a plane base is considered as an example.  相似文献   

7.
Within the framework of a piecewise homogeneous body model, with the use of exact equations of the geometrically nonlinear theory of viscoelastic bodies, the distribution of near-surface self-balanced normal stresses in a body consisting of a viscoelastic half-plane, an elastic locally curved bond layer, and a viscoelastic covering layer is investigated. A method for solving the problem considered by employing the Laplace and Fourier transformations is developed. Numerical results for the self-balanced normal stresses caused by a local curving (imperfection) of an elastic bond layer upon tension and compression of the body mentioned along the free face plane are presented and analyzed. The viscoelasticity of the materials is described by the Rabotnov fractional-exponential operators. A macroscopic failure criterion is proposed, and the validity of this criterion is examined.  相似文献   

8.
Under a plane-strain state in a half-plane covered with a homogeneous prestressed layer, the Rayleigh-wave propagation along the layer is investigated. The investigations are carried out within the framework of a piecewise homogeneous body model with the use of the three-dimensional linearized theory of elasticity. Complete and incomplete contact conditions between the layer and half-plane are considered. Numerical results relating to the dispersion of the waves are obtained for the case where the layer and half-plane are isotropic and homogeneous.  相似文献   

9.
The paper is concerned with the model of an elastic body in the form of a half-plane whose boundary is subjected to periodic loading. It is assumed that there exists an additional surface stress, which is characteristic of nanometer-sized bodies and which obeys the laws of surface elasticity theory. With the use of the boundary properties of analytical functions and the Goursat-Kolosov complex potentials, the boundary value problem in its general setting with an arbitrary load is reduced to a hypersingular integral equation with respect to the derivative of the surface stress. For a periodic load, the solution of this equation is obtained in the form of a Fourier series. The effect of the surface stress upon the stress state of the boundary of the half-plane is examined with independent action of periodically distributed tangential and normal loads. In particular, the size effect was discovered, which is manifested in the dependence of stresses versus the period of loading within several dozens of nanometers. Normal loads are shown to be responsible for tangential stresses on the boundary, which are zero in the classical solution.  相似文献   

10.
The transient dynamic contact problem of the impact of a plane absolutely rigid punch on an elastic half-plane is considered. The solution of the integral equation of this problem in terms of the unknown Laplace transform of the contact stresses at the punch base is constructed by a special method of successive approximations. The solution of the transient dynamic contact problem is obtained after applying an inverse Laplace transformation to the solution of the integral equation over the whole time range of the impact process, and the law of the penetration of the punch into the elastic medium is determined from a Volterra-type integrodifferential equation. The conditions for the punch to begin to separate from the elastic half-plane are formulated from the solution obtained, and all the stages of the separation process are investigated in detail. The law of the punch motion on the elastic half-plane and the width of the contact area, which varies during the separation, are then determined from the solution of the Volterra-type integrodifferential equation when an additional condition is satisfied.  相似文献   

11.
The development of a viscoplastic flow in a solid layer of an elastoviscoplastic material on an inclined plane is considered when loading stresses act on its free surface. It is shown that the elastoplastic boundary starts its motion from the rigid inclined plane and, propagating through the elastic core, it can reach the free surface of the layer. An exact solution is obtained for the dynamic problem of the retardation of developed viscoplastic flow after the loading stresses are abruptly removed. The possibility of writing the equation of motion for the unloading wave in terms of the displacements is pointed out. It reduces to an inhomogeneous wave equation where the velocity of the unloading wave is found to be equal to the velocity of the equivoluminal elastic wave. Reflection of the unloading wave from a rigid boundary in the form of an inclined plane is also considered.  相似文献   

12.
Within the frame work of the three-dimensional linearized theory of stability of deformable bodies (TLTSDB), the near-surface buckling instability of a system consisting of a half-plane (substrate), a viscoelastic bond layer, and an elastic covering layer is suggested. The equations of the TLTSDB are obtained from the three-dimensional geometrically non linear equations of viscoelasticity theory by using the boundary-form perturbation technique. By employing the Laplace transform, a method for solving the problem is developed. It is supposed that the covering layer has an insignificant initial imperfection. The stability of the system is considered lost if the imperfection starts to increase and grows indefinitely. Numerical results for the critical compressive force and the critical time are presented. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 4, pp. 517–530, July–August, 2006.  相似文献   

13.
The dynamic response of a system consisting of an initially stressed covering layer and an initially stressed half-plane to a moving time-harmonic load is investigated within the scope of the piecewise-homogeneous body model utilizing three-dimensional linearized wave propagation theory in the initially stressed body. It is assumed that the material of the layer and half-plane is orthotropic. It is also assumed that the velocity of the line-located time harmonic moving load which acts on the covering layer is constant. The investigations were carried out were for the plane-strain state under subsonic velocity of the moving load for two types of contact conditions, namely: complete and incomplete. An algorithm is developed for the determination of the values of the moving load’s critical velocity. For various values of the problem parameters the numerical results were presented and discussed.  相似文献   

14.
该文对下面的一个弹性接触问题进行了再讨论.一列周期排列刚性压头压入一个各向异性弹性半平面的边界上,并有摩擦力存在, 求应力平衡.此问题在文献[1, 2]中曾讨论过并求出其解.但解法似不完全确切.该文将它进行修正从而获得精确解的封闭形式.  相似文献   

15.
A general method is presented for the rigorous solution of Eshelby’s problem concerned with an arbitrary shaped inclusion embedded within one of two dissimilar elastic half-planes in plane elasticity. The bonding between the half-planes is considered to be imperfect with the assumption that the interface imperfections are uniform. Using analytic continuation, the basic boundary value problem is reduced to a set of two coupled nonhomogeneous first-order differential equations for two analytic functions defined in the lower half-plane which is free of the thermal inclusion. Using diagonalization, the two coupled differential equations are decoupled into two independent nonhomogeneous first-order differential equations for two newly defined analytic functions. The resulting closed-form solutions are given in terms of the constant imperfect interface parameters and the auxiliary function constructed from the conformal mapping which maps the exterior of the inclusion onto the exterior of the unit circle. The method is illustrated using several examples of an imperfect interface. In particular, when the same degree of imperfection is realized in both the normal and tangential directions between the two half-planes, a thermal inclusion of arbitrary shape in the upper half-plane does not cause any mean stress to develop in the lower half-plane. Alternatively, when the imperfect interface parameters are not equal, then a nonzero mean stress will be induced in the lower half-plane by the thermal inclusion of arbitrary shape in the upper half-plane. Detailed results are presented for the mean stress and the interfacial normal and shear stresses caused by a circular and elliptical thermal inclusion, respectively. Results from these calculations reveal that the imperfect bonding condition has a significant effect on the internal stress field induced within the inclusion as well as on the interfacial normal and shear stresses existing between the two half-planes especially when the inclusion is near the imperfect interface.  相似文献   

16.
Asymptotic dependences of the deformation on the contact stresses are derived for a strip of variable width bound to an elastic half-plane. Similar relations were previously obtained in [1] for a strip of constant width.  相似文献   

17.
The two-dimensional indentation of an elastic half-plane bya rigid punch under normal and tangential load is considered.The contact area is divided into an inner region with adhesion,the dimension of which is known beforehand, surrounded by tworegions in which inward slip takes place. The problem is formulatedin terms of a coupled pair of Cauchy type integrals for thenormal and shear stresses at the surface of the half-plane.In the case of friction-free slip these integrals are combinedto an inhomogeneous Fredholm equation which is solved by a methodof successive approximations. In the case when the inward slipis governed by Coulomb friction, the problem is solved by anumerical method.  相似文献   

18.
The closed-form analytic expressions for the stresses at any point of an elastic plate coupling in different ways to a base as a result of a two-dimensional shear strip-loading are obtained. The contact between the horizontal layer and the base is either smooth-rigid or rough-rigid or welded. The variations of the shear stresses with the horizontal distance have been studied numerically. It is found that the effect of different boundary conditions on the stress field is significant and the stresses for an elastic layer lying over an elastic half-space differ considerably from those of an entire homogeneous elastic half-space.  相似文献   

19.
The plane problem of the sliding contact of a punch with an elastic half-plane is considered. The deformation force resisting the sliding of the punch, caused by the asymmetry of the contact pressure curve, is calculated. It is established that, in order to satisfy the law of conservation of energy, it is necessary to take account of additional tangential forces applied to the end corners of the punch.  相似文献   

20.
The dynamic contact problem of the motion of a flat punch on the boundary of an elastic half-plane is considered. During motion, the punch deforms the elastic half-plane, penetrating it in such a manner that its base remains parallel to the boundary of the half-plane at each instant of time. In movable coordinates connected to the moving punch, the contact problem reduces to solving a two-dimensional integral equation, whose two-dimensional kernel depends on the difference between the arguments for each of the variables. An approximate solution of the integral equation of the problem is constructed in the form of a Neumann series, whose zeroth term is represented in the form of the superposition of the solutions of two-dimensional integral equations on the coordinate semiaxis minus the solution of the integral equation on the entire axis. This approach provides a way to construct the solution of the two-dimensional integral equation of the problem in four velocity ranges of motion of the punch, which cover the entire spectrum of its velocities, as well as to perform a detailed analysis of the special features of the contact stresses and vertical displacements of the free surface on the boundary of the contract area. An approximate method for solving the integral equation, which is based on a special approximation of the integrand of the kernel of the integral equation in the complex plane, is proposed for obtaining effective solutions of the problem that do not contain singular quadratures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号