首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tris(pyrazolyl)borate aryldiazenido complexes [RuTpLL'(ArN(2))](BF(4))(2) (1-3) [Ar = C(6)H(5), 4-CH(3)C(6)H(4); Tp = hydridotris(pyrazolyl)borate; L = P(OEt)(3) or PPh(OEt)(2), L' = PPh(3); L = L' = P(OEt)(3)] were prepared by allowing dihydrogen [RuTp(eta(2)-H(2))LL'](+) derivatives to react with aryldiazonium cations. Spectroscopic characterization (IR, (15)N NMR) using the (15)N-labeled derivatives strongly supports the presence of a linear [Ru]-NN-Ar aryldiazenido group. Hydrazine complexes [RuTp(RNHNH(2))LL']BPh(4) (4-6) [R = H, CH(3), C(6)H(5), 4-NO(2)C(6)H(4); L = P(OEt)(3) or PPh(OEt)(2), L' = PPh(3); L = L' = P(OEt)(3)] were also prepared by reacting the [RuTp(eta(2)-H(2))LL'](+) cation with an excess of hydrazine. The complexes were characterized spectroscopically (IR and NMR) and by X-ray crystal structure determination of the [RuTp(CH(3)NHNH(2))[P(OEt)(3)](PPh(3))]BPh(4) (4d) derivative. Tris(pyrazolyl)borate aryldiazene complexes [RuTp(ArN=NH)LL']BPh(4) (7-9) (Ar = C(6)H(5), 4-CH(3)C(6)H(4)) were prepared following three different methods: (i). by allowing hydride species RuHTpLL' to react with aryldiazonium cations in CH(2)Cl(2); (ii). by treating aryldiazenido [RuTpLL'(ArN(2))](BF(4))(2) with LiBHEt(3) in CH(2)Cl(2); (iii). by oxidizing arylhydrazine [RuTp(ArNHNH(2))LL']BPh(4) complexes with Pb(OAc)(4) in CH(2)Cl(2) at -30 degrees C. Methyldiazene complexes [RuTp(CH(3)N=NH)LL']BPh(4) were also prepared by the oxidation of the corresponding methylhydrazine [RuTp(CH(3)NHNH(2))LL']BPh(4) with Pb(OAc)(4).  相似文献   

2.
The ion-contact complexes [{(eta(5)-Cp)(2)Mn(eta(2):eta(5)-Cp)K}(3)]x0.5 THF (1x0.5 THF) and [{(eta(2)-Cp)(2)(eta(2);eta(5)-MeCp)MnK(thf)}]x2 THF (2x2 THF) and ion-separated complexes [Mg(thf)(6)][(eta(2)-Cp)(3)Mn](2) (3), [Mg(thf)(6)][(eta(2)-Cp)(eta(2)-MeCp)(2)Mn)](2)x0.5 THF (4x0.5 THF), [Mg(thf)(6)][(eta(2)-MeCp)(3)Mn)](2)x0.5 THF (5x0.5 THF) and [Li([12]crown-4)](5)[(eta-Cp)(3)Mn](5) (6) (Cp=C(5)H(5), CpMe=C(5)H(4)CH(3)), have been prepared and structurally characterised. The effects of varying the Cp and CpMe ligands in complexes 1-5 have been probed by variable-temperature magnetic susceptibility measurements and EPR spectroscopic studies.  相似文献   

3.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

4.
Addition of 2 equiv of a sigma-donor ligand (L = pyridine, 4-picoline, or quinoline) to complexes of the type [W(NPh)(eta(4)-arene)(o-(Me3SiN)2C6H4)] (arene = CH3CH2C6H5 (3), CH3CH2CH2C6H5 (4)) gave the W(IV)L2 compounds, [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2] (5), [W(NPh)(o-(Me3SiN)2C6H4)(p-C6H7N)2] (6), and [W(NPh)(o-(Me3SiN)2C6H4)(C9H7N)2] (7). Synthesis of compounds 5 and 6 by Na degrees reduction of [W(NPh)(o-(Me3SiN)2C6H4)Cl2] in the presence of 3 equiv of L (L = 5, pyridine or 6, 4-picoline) is also presented. Compounds 5, 6, and 7 display hindered rotation of the donor ligands about the W-N bonds, resulting from a steric interaction with the Me3Si groups of the diamide ligand. The coordinative unsaturation of 5 and 6 has also been explored. Compounds 5 and 6 readily react with either CO and PMe3 to generated the six coordinate complexes [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2(CO)] (8a), [W(NPh)(o-(Me3SiN)2C6H4)(C6H7N)2(CO)] (8b), [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)(PMe3)2] (10a), and [W(NPh)(o-(Me3SiN)2C6H4)(C6H7N)(PMe3)2] (10b), respectively.  相似文献   

5.
Several compounds based on the C(1)-symmetric ligands [N(R)C(Ar)NPh]- [abbreviated as B1 (Ar = C(6)H(4)Me-4) or B2 (Ar = Ph), R = SiMe(3)] are reported. They are the crystalline metal benzamidinates [Li(mu:kappa2-B1)(OEt2)](2) (1), [Al(kappa2-B1)2Me] (2), [Al(kappa2-B1)2X] [X = Cl/Me, 1 : 1 (3)], [Sn(kappa2-B1)2] (4), Zr(kappa2-B1)2Cl2 (5), [Zr(kappa2-B1)3Cl] (6), [Na(mu:kappa2-B1)(tmeda)]2 (7), K[B1] (8), Li(B2)(OEt2) (9) and Zr(kappa2-B1)3Cl (10) and the known benzamidine Z-H2NC(C6H4Me-4) = NPh (11). They were prepared by (i) insertion of the nitrile 4-MeC6H4CN (1, 7, 8, 11) or PhCN (9) into the appropriate M-N(R')Ph [R' = R and M = Li (1, 9), Na (7), K (8)] bond and subsequent hydrolysis for 11 [R' = H and M = Li], or (ii) a ligand transfer reaction using the lithium amidinate 1 and Al(Me)2Cl (2, 3), SnCl2 (4) or ZrCl4 (5, 6), or Li(B2) and ZrCl4 (10). The X-ray structures of 1, 2, 3, 4, 6b (i.e..3PhMe) 7, and 11 are presented. Exploratory polymerisation experiments are described, using 2, 5 or 6 as a procatalyst with methylaluminoxane (MAO) (Al : Zr ca. 500 : 1) as promoter. Thus toluene solutions were exposed to C2H4 under ambient conditions; while 2 was unresponsive, 5 and 6 showed modest activity in the formation of polyethylene.  相似文献   

6.
The heteroleptic sandwich complex [Cr(eta(5)-C5H5)(eta(7)-C7H7)] (trochrocene) was prepared by subsequent treatment of CrCl3 with NaCp and Mg in the presence of cycloheptatriene in yields of 40%. Selective dimetalation employing tBuLi/tmeda (N, N, N', N'-tetramethylethylenediamine) afforded the highly reactive species [Cr(eta(5)-C5H4Li)(eta(7)-C7H6Li)] x tmeda. An X-ray crystal-structure determination of its thf solvate revealed a symmetrical, dimeric composition in the solid state, that is, a formula of [Cr(eta(5)-C5H4Li)(eta(7)-C7H6Li)]2 x (thf)8, where the C5H4 moieties of both units are connected by two bridging lithium atoms. Addition of different element dihalides to the dilithio precursor facilitated the isolation of ansa complexes with boron and germanium in the bridging position. Structural characterization by X-ray diffraction studies on [Cr(eta(5)-C5H4)-BN(SiMe3)2-(eta(7)-C7H6)] and [Cr(eta(5)-C5H4)-GeMe2-(eta(7)-C7H6)] emphasized the strained character with tilt angles of 23.87(13) degrees and 15.07(17) degrees , respectively. In contrast, the isolation of the appropriate [1]stannatrochrocenophane failed because of the thermal lability of the resulting product. However, the corresponding 1,1'-disubstitued derivatives [Cr(eta(5)-C5H4R)(eta(7)-C7H6R)] (R = B(Cl)NiPr2, SiMe3, GeMe3, SnMe3) were obtained by reverse addition of the dilithio precursor to an excess of the element (di)halide. The unstrained nature was proven by a crystal structure analysis of the 1,1'-diborylated species. The electronic structure of these substituted trochrocene derivatives, as well as of the [2]bora and [n]sila congeners (n = 1, 2), was investigated by means of UV-vis spectroscopy and DFT methods. As a consequence of the strong electronic influence of the B-N pi-system on the LUMOs, the UV-vis studies revealed a complementary correlation of the lowest energy band maxima as a function of molecular distortion for the boron containing species on the one hand, and the boron-free compounds on the other hand. These trends were reproduced fairly well by time dependent DFT calculations.  相似文献   

7.
The following crystalline, or microcrystalline (4), metal diamides have been prepared under mild conditions from the N,N'-disubstituted 1,2-diaminobenzene [{N(R)H}2C6H4-1,2] (H(2): R = CH2But; H2L': R = SiMe2NPri2): [Li(thf)(mu-L)(mu-I)Ca(thf)] (1), [Li(thf)4][{Zn(mu-L)}3(mu3-Cl)] (2), [Li(thf)4][Zn(L)2] (3), [{Li(OEt2)(mu-L)Zn}2(mu-L)] (4), [Li(OEt2)(mu-L)Zn(mu-L)Zn(LH)] (5) and [Li(thf)(mu-L')Li(thf)2] (6). Compounds 1-5 were obtained from [Li2(L)] and CaI2 (1) or ZnCl2 (2-5) while 6 was derived from H2(L') and LiBun. Compound 5 was isolated as a very minor by-product from the synthesis of 4, and is assumed to have been formed therefrom by adventitious hydrolysis. The green salt 3 was paramagnetic with the negative charge uniformly delocalised on the two ligands. The other compounds were colourless and diamagnetic. The X-ray structures of each, except 4, are reported and discussed.  相似文献   

8.
The synthesis of the following crystalline complexes is described: [Li(L)(thf)2] (), [Li(L)(tmeda)] (), [MCl2(L)] [M=Al (), Ga ()], [In(Cl)(L)(micro-Cl)2Li(OEt2)2] (), [In(Cl)(L){N(H)C6H3Pri(2)-2,6}] (), [In(L){N(H)C6H3Pri(2)-2,6}2] (), [{In(Cl)(L)(micro-OH)}2] (), [L(Cl)In-In(Cl)(L)] () (the thf-solvate, the solvate-free and the hexane-solvate), [{In(Cl)L}2(micro-S)] () and [InCl2(L)(tmeda)] () ([L]-=[{N(C6H3Pri(2)-2,6)C(H)}2CPh]-). From H(L) (), via Li(L) in Et2O, and thf, tmeda, AlCl3, GaCl3 or InCl3 there was obtained , , , or , respectively in excellent yield. Compound was the precursor for each of , and [{InCl3(tmeda)2{micro-(OSnMe2)2}}] () by treatment with one () or two () equivalents of K[N(H)(C6H3Pri(2)-2,6)], successively Li[N(SiMe3)(C6H3Pri(2)-2,6)] and moist air (), Na in thf (), tmeda (), or successively tmeda and Me3SnSnMe3 (). Crystals of (with an equivalent of In) and were obtained from InCl or thermolysis of [In(Cl)(L){N(SiMe3)(C6H3Pri(2)-2,6)}] () {prepared in situ from and Li[N(SiMe3)(C6H3Pri(2)-2,6)] in Et2O}, respectively. Compound was obtained from a thf solution of and sulfur. X-Ray data for crystalline , , , , , and are presented. The M(L) moiety in each (not the L-free ) has the monoanionic L ligated to the metal in the N,N'-chelating mode. The MN1C1C2C3N2 six-membered M(L) ring is pi-delocalised and has the half-chair (, and ) or boat (, and ) conformation.  相似文献   

9.
The crystalline dimeric 1-azaallyllithium complex [Li{mu,eta(3-N(SiMe3)C(Ad)C(H)SiMe3}]2 (1) was prepared from equivalent portions of Li[CH(SiMe3)2] and 1-cyanoadamantane (AdCN). Complex was used as precursor to each of the crystalline complexes 2-8 which were obtained in good yield. By 1-azaallyl ligand transfer, 1 afforded (i) [Al{eta3-N(SiMe3)C(Ad)C(H)SiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (5) with [AlCl2Me](2), (ii) [Sn{eta3-N(SiMe3)C(Ad)C(H)SiMe3}2] (7) with Sn[N(SiMe3)2]2, and (iii) [Li(N{C(Ad)=C(H)SiMe3-E}{Si(NN)SiMe3})(thf)2] (8) with the silylene Si[(NCH(2)Bu(t))2C6H(4)-1,2] [= Si(NN)]. By insertion into the C[triple bond, length as m-dash]N bond of the appropriate cyanoarene RCN, gave the beta-diketiminate [Li{mu-N(SiMe3)C(Ad)C(H)C(R)NSiMe3}]2 [R = Ph (2), C(6)H(4)Me-4 (3)], and yielded [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (6). The beta-diketiminate [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}Me2] (4) was prepared from 2 and [AlClMe2]2. The X-ray structures of 1 and 3-8 are presented. Multinuclear NMR spectra in C6D6 or C6D5CD3 have been recorded for each of 1-8; such data on 8 revealed that in solution two minor isomers were also present.  相似文献   

10.
The 3,5-di-tert-butylpyrazolato (3,5-tBu(2)pz) derivatives of aluminum [(eta(1),eta(1)-3,5-tBu(2)pz)(mu-Al)R(1)R(2)](2) (R(1) = R(2) = Me 1; R(1) = R(2) = Et, 2; R(1) = R(2) = Cl, 3; R(1) = R(2) = I, 4; [(eta(2)-3,5-tBu(2)pz)(3)Al], 5; [Al(2)(eta(1),eta(1)-3,5-tBu(2)pz)(2)(mu-E)(C triple bond CPh)(2)] (E = S (6), Se (7), Te (8)) have been prepared in good yield. Compounds 1 and 2 were obtained by the reactions of H[3,5-tBu(2)pz] with Me(3)Al and Et(3)Al, respectively. Reaction of [(eta(1),eta(1)-3,5-tBu(2)pz)(mu-Al)H(2)](2) with the pyrazole H[3,5-tBu(2)pz] gave [(eta(2)-3,5-tBu(2)pz)(3)Al] (5). The reaction of [(eta(1),eta(1)-3,5-tBu(2)pz)(mu-Al)R(2)](2) (R = H, Me) and I(2) yielded 4, while the reaction of 1 equiv of K[3,5-tBu(2)pz] and AlCl(3) afforded 3. In addition, the reaction of [Al(2)(eta(1),eta(1)-3,5-tBu(2)pz)(2)(mu-E)H(2)] and HC triple bond CPh gave 6, 7, and 8. All compounds have been characterized by elemental analysis, NMR, and mass spectroscopy. The molecular structure analyses of compounds 1, 3, 6, and 7 by X-ray crystallography showed that complexes 1 and 3 are dimeric with two eta(1),eta(1)-pyrazolato groups in twisted conformation while 6 and 7 with two eta(1),eta(1)-pyrazolato groups display a boat conformation.  相似文献   

11.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

12.
Treatment of [UO(2)Cl(2)(thf)(3)] in thf with 2 equiv of Na[PhC(NSiMe(3))(2)] (Na[NCN]) or Na[Ph(2)P(NSiMe(3))(2)] (Na[NPN]) gives uranyl complex [UO(2)(NCN)(2)(thf)] (1) or [UO(2)(NPN)(2)] (3), respectively. Each complex is a rare example of out-of-plane equatorial nitrogen ligand coordination; the latter contains a significantly bent O=U=O unit and represents the first example of a uranyl ion within a quadrilateral-faced monocapped trigonal prismatic geometry. Removal of the thf in 1 gives [UO(2)(NCN)(2)] (2) with in-plane N donor ligands. Addition of 3 equiv of Na[NCN] gives the tris complex [Na(thf)(2)PhCN][[UO(2)(NCN)(3)] (4.PhCN) with elongation and weakening of one U=O bond through coordination to Na(+). Hydrolysis of 4 provides the oxo-bridged dimer [Na(thf)UO(2)(NCN)(2)](2)(micro(2)-O) (6), a complex with the lowest reported O=U=O symmetrical stretching frequency (nu(1) = 757 cm(-)(1)) for a dinuclear uranyl complex. The anion in complex 4 is unstable in solution but can be stabilized by the introduction of 18-crown-6 to give [Na(18-crown-6)][UO(2)(NCN)(3)] (5). The structures of 1-4 and 6 have been determined by crystallography, and all except 2 show significant deviations of the N ligand atoms from the equatorial plane, driven by the steric bulk of the NCN and NPN ligands. Despite the unusual geometries, these distortions in structure do not appear to have any direct effect on the bonding and electronic structure of the uranyl ion. The main influences toward lowering the U=O bond stretching frequency (nu(1)) are the donating ability of the equatorial ligands, overall charge of the complex, and U=O.Na-type interactions. The intense orange/red colors of these compounds are because of low-energy ligand-to-metal charge-transfer electronic transitions.  相似文献   

13.
The nature of the substituents present on the calix-tetrapyrrole tetra-anion ligand [[R2C(C4H2N)]4]4- (R = [-(CH2)5-]0.5, Et) determines the type of reactivity of the corresponding SmII compounds with acetylene. With R = [-(CH2)5-]0.5, dehydrogenation occurred to yield the nearly colorless dinuclear diacetylide complex [[[[-(CH2)5-]4-calix-tetrapyrrole]SmIII]2(mu-C2Li4)].THF as the only detectable reaction product. Conversely, with R = Et, acetylene coupling in addition to dehydrogenation resulted in the formation of a dimeric butatrienediyl enolate derivative [[(Et8-calix-tetrapyrrole)SmIII[Li[Li(thf)]2(mu-OCH=CH2)]]2(mu,eta2,eta'2-HC=C=C=CH)]. Reaction of the trivalent hydride [(Et8-calix-tetrapyrrole)(thf)SmIII[(mu-H)[Li(thf)]]2 or of the terminally bonded methyl derivative [(Et8-calix-tetrapyrrole)(CH3)SmIII[[Li(thf)]2[Li(thf)2](mu3-Cl)]] with acetylene resulted in a mixture of the carbide [[(Et8-calix-tetrapyrrole)SmIII]2(mu-C2Li4)].Et2O with the dimerization product [[(Et8-calix-tetrapyrrole)SmIII[Li[Li(thf)]2(mu3-OCH=CH2)]]2-mu,eta2,eta'2-HC=C=C=CH)]. The same reaction also yielded a third product, a trivalent complex [[(Et8-calix-tetrapyrrole)SmIII[Li(thf)2]]2], in which the macrocycle was isomerized by shifting the ring attachment of one of the four pyrrole rings.  相似文献   

14.
The osma(II)cycles [Os(phpy)(LL)(2)]PF(6) (LL = 1,10-phen (3a) and 4,4'-Me(2)-2,2'-bpy (3b)) are made from [(eta(6)-C(6)H(6))Os(micro-Cl)Cl](2) (1) either via transmetalation using the [Hg(phpy)(2)] organomercurial in MeOH or via the sp(2)-C-H bond cleavage of 2-phenylpyridine (phpyH) in MeCN to afford [(eta(6)-C(6)H(6))Os(phpy)Cl] or [(eta(6)-C(6)H(6))Os(phpy)(MeCN)]PF(6), respectively. The latter two react cleanly with LL to give 3a and 3b, the M(II/III) redox potentials of which equal 30 and -100 mV (vs Ag/AgCl), respectively. The electrochemically made Os(III) species oxidize rapidly reduced glucose oxidase. The second-order rate constant equals 1.1 x 10(7) M(-)(1) s(-)(1) for 3a at 25 degrees C, pH 7.  相似文献   

15.
The nitrile ligands in trans-[PtX2(PhCN)2] (X = Cl, Br, I) undergo sequential 1,3 dipolar cycloadditions with nitrones R1R2C=N+(Me)-O(-) (R1 = H, R2 = Ph; R1 = CO2Et, R2 = CH2CO2Et) to selectively form the Delta4-1,2,4-oxadiazoline complexes trans-[PtX2(PhCN) (N=C(Ph)-O-N(Me)-CR1R2)] or trans-[PtX2(N=C(Ph)-O-N(Me)-CR1R2)2] in high yields. The reactivity of the mixed ligand complexes trans-[PtX2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] towards oxidation and ligand substitution was studied in more detail. Oxidation with Cl2 or Br2 provides the Pt(IV) species trans-[PtX2Y2(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] (X, Y = Cl, Br). The mixed halide complex (X = Cl, Y = Br) undergoes halide scrambling in solution to form trans-[PtX(4-n)Yn(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] as a statistical mixture. Ligand substitution in trans-[PtCl2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] allows for selective replacement of the coordinated nitrile by nitrogen heterocycles such as pyridine, DMAP or 1-benzyl-2-methylimidazole to produce mixed ligand Pt(II) complexes of the type trans- [PtX2(heterocycle)(N=C(Ph)-O-N(Me)-CR1R2)]. All compounds were characterised by elemental analysis, mass spectrometry, IR and 1H, 13C and 195Pt NMR spectroscopy. Single-crystal X-ray structural analysis of (R,S)-trans-[PtBr2(N=C(Ph)-O-N(Me)-CH(Ph))2] and trans-[PtCl2(C5H5N)(N=C(Ph)-O-N(Me)-CH(Ph))] confirms the molecular structure and the trans configuration of the heterocycles relative to each other.  相似文献   

16.
[Na(2)(thf)(4)(P(4)Mes(4))] (1) (Mes = 2,4,6-Me(3)C(6)H(2)) reacts with one equivalent of [NiCl(2)(PEt(3))(2)], [NiCl(2)(PMe(2)Ph)(2)], [PdCl(2)(PBu(n)(3))(2)] or [PdCl(2)(PMe(2)Ph)(2)] to give the corresponding nickel(0) and palladium(0) dimesityldiphosphene complexes [Ni(eta(2)-P(2)Mes(2))(PEt(3))(2)] (2), [Ni(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (3), [Pd(eta(2)-P(2)Mes(2))(PBu(n)(3))(2)] (4) and [Pd(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (5), respectively, via a redox reaction. The molecular structures of the diphosphene complexes 2-5 are described.  相似文献   

17.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

18.
Catalytic dehydrocoupling of phosphines was investigated using the anionic zirconocene trihydride salts [Cp*2Zr(mu-H)3Li]3 (1 a) or [Cp*2Zr(mu-H)3K(thf)4] (1 b), and the metallocycles [CpTi(NPtBu3)(CH2)4] (6) and [Cp*M(NPtBu3)(CH2)4] (M=Ti 20, Zr 21) as catalyst precursors. Dehydrocoupling of primary phosphines RPH2 (R=Ph, C6H2Me3, Cy, C10H7) gave both dehydrocoupled dimers RP(H)P(H)R or cyclic oligophosphines (RP)n (n=4, 5) while reaction of tBu3C6H2PH2 gave the phosphaindoline tBu2(Me2CCH2)C6H2PH 9. Stoichiometric reactions of these catalyst precursors with primary phosphines afforded [Cp*2Zr((PR)2)H][K(thf)4] (R=Ph 2, Cy 3, C6H2Me3 4), [Cp*2Zr((PPh)3)H][K(thf)4] (5), [CpTi(NPtBu3)(PPh)3] (7) and [CpTi(NPtBu3)(mu-PHPh)]2 (8), while reaction of 6 with (C6H2tBu3)PH2 in the presence of PMe3 afforded [CpTi(NPtBu3)(PMe3)(P(C6H2tBu3)] (10). The secondary phosphines Ph2PH and (PhHPCH2)2CH2 also undergo dehydrocoupling affording (Ph2P)2 and (PhPCH2)2CH2. The bisphosphines (CH2PH2)2 and C6H4(PH2)2 are dehydrocoupled to give (PCH2CH2PH)2)(12) and (C6H4P(PH))2 (13) while prolonged reaction of 13 gave (C6H4P2)(8) (14). The analogous bisphosphine Me2C6H4(PH)2 (17) was prepared and dehydrocoupling catalysis afforded (Me2C6H2P(PH))2 (18) and subsequently [(Me2C6H2P2)2(mu-Me2C6H2P2)]2 (19). Stoichiometric reactions with these bisphosphines gave [Cp*2Zr(H)(PH)2C6-H4][Li(thf)4] (22), [CpTi(NPtBu3)(PH)2C6H4]2 (23) and [Cp*Ti(NPtBu3)(PH)2C6H4] (24). Mechanistic implications are discussed.  相似文献   

19.
Recent results (post-1990) on the synthesis and structures of bis(trimethylsilyl)methyls M(CHR2)m (R = SiMe3) of metals and metalloids M are described, including those of the crystalline lipophilic [Na(μ-CHR2)], [Rb(μ-CHR2)(PMDETA)]2, K4(CHR2)4(PMDETA)2, [Mg(CHR2)(μ-CHR2)], P(CHR2)2 (gaseous) and P2(CHR2)4, [Yb(CHR2)2(OEt2)2] and [{Yb(CR3)(μ-OEt)(OEt2)}2]; earlier information on other M(CHR2)m complexes and some of their adducts is tabulated. Treatment of M(CHR2) (M = Li or K) with four different nitriles gave the X-ray-characterized azaallyls or β-diketinimates , and (LL′ = N(R)C(tBu)CHR, L′L′ = N(R)C(Ph)C(H)C(Ph)NR, LL″ = N(R)C(Ph)NC(H)C(Ph)CHR, R = SiMe3 and Ar = C6H3Me2-2,5). The two lithium reagents were convenient sources of other metal azaallyls or β-diketinimates, including those of K, Co(II), Zr(IV), Sn(IV), Yb(II), Hf(IV) and U(VI)/U(III). Complexes having one or more of the bulky ligands [LL′], [L′L′], [LL], [LL″], [L″L], [LL] and [{N(R)C(tBu)CH}2C6H4-2]2− are described and characterized (LL = N(H)C(Ph)C(H)C(Ph)NH, L″L = N(R)C(tBu)C(H)C(Ph)NR, LL = N(R)C(tBu)CHPh). Among the features of interest are (i) the contrasting tetrahedral or square-planar geometry for and , respectively, and (ii) olefin-polymerization catalytic activity of some of the zirconium(IV) chlorides.  相似文献   

20.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号