首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The relative aromaticity of benzenoid rings in the linear polyacenes is investigated using two novel aromaticity approaches. According to the first, the aromaticity of individual benzene rings was gauged by the values of six-center bond indices (SCI) calculated within the so-called Generalized Population Analysis (GPA). In the second approach, the same goal is addressed using the theory of Molecular Quantum Similarity (MQS). Both independent approaches are found to correlate very well, and both point toward decreasing aromaticity in any linear polyacenes upon going from the outer to inner rings.  相似文献   

2.
A homogeneous set of values for the aromaticity indices ASE (Aromatic Stabilisation Energy), HOMA (Harmonic Oscillator Model of Aromaticity) and NICS(1) (Nucleus-Independent Chemical Shift) for azoles has been investigated using multiple linear regression analysis. Statistically-significant relationships were found between the aromaticity indices and the number of nitrogen atoms at positions 2/5 and 3/4 of the ring. Aza-derivatives of pyrrole, furan and thiophene all gave similar relationships. For all three indices aza-substitution at positions 2 and/or 5 increases aromaticity. However, aza-substitution at positions 3 and/or 4 decreases classical aromaticity (ASE and HOMA) but increases magnetic aromaticity (NICS(1)). These indices appear to be measuring different properties of the azoles. The influence of aza-substitution on these different aspects of aromaticity is tentatively rationalized in terms of either bond length equalization or uniformity of π electron distribution.  相似文献   

3.
4.
The implementation of the n-center electron delocalization indices, n-DIs, and n-order electron localization indices, n-LIs, within the framework of the quantum theory of atoms in molecules, QTAIM, is performed. n-DIs are shown to be very useful to study the local aromaticity in monocyclic and polycyclic compounds. Total and pi n-DIs from n=4 to 7 were computed for a series of typical 4, 5, 6, and 7-center aromatic and antiaromatic rings. For n>or=5 the pi n-DI accounts for the 95% of the total n-DI and can be employed alone to measure the aromaticity. A scaling factor on the n-DIs is required in order to compare the aromaticity of [5c-6e] and [6c-6e] rings, the same correction allows to estimate the relative aromatic stabilization of polycyclic compounds using the sum of its values for individual rings. This is called Effective Scaled Electron Delocalization, ESED. The comparison with other aromaticity indices reflects a good correlation between ESED and both resonance energies, and HOMA indices. The most important differences between scaled pi n-DIs and NICS(0) indices are found for compounds that contain rings with different number of centers or pi electrons.  相似文献   

5.
This work introduces a new local aromaticity measure, defined as the mean of Bader's electron delocalization index (DI) of para-related carbon atoms in six-membered rings. This new electronic criterion of aromaticity is based on the fact that aromaticity is related to the cyclic delocalized distribution of pi-electrons. We have found that this DI and the harmonic oscillator model of aromaticity (HOMA) index are strongly correlated for a series of six-membered rings in eleven planar polycyclic aromatic hydrocarbons. The correlation between the DI and the nucleus-independent chemical shift (NICS) values is less remarkable, although in general six-membered rings with larger DI values also have more negative NICS indices. We have shown that this index can also be applied, with some modifications, to study of the aromaticity in five-membered rings.  相似文献   

6.

A newly developed exchange-correlation functional (MPWB1K) in density functional theory has been applied to evaluate the electron delocalization of individual fragments in the stacking interaction between nucleic acid bases (NABs). Electronically and structural-based indices have been employed to investigate the aromaticity variation during stacking interaction. A quantitative study of NABs in their isolated and stacked forms reveals that stacking interaction causes a decrease in bond delocalization. It is shown that the decrease in the aromaticity is accompanied by local decrease in two-center delocalization indices within the pyrimidine rings. We found that the aromaticity exhibits a similar trend for NABs in both their isolated and stacked forms. Moreover, it is indicated that aromatic fluctuation index is more sensible index to delineate the aromaticity variation during stacking interaction.

  相似文献   

7.
Due to the insufficient interaction of the phosphorus lone pair with the butadiene moiety, the aromaticity of the phosphole ring is lower than that of its counterpart's pyrrole, furan, and thiophene. Considering the high importance of phosphole core in organic chemistry, increasing its stability through reinforcement its aromaticity can be very valuable. In the present work, the aromaticity of the phosphole on the anomeric carbon in both the axial and equatorial conformers of the unsaturated six-membered heterocycles, using structural, electronic, energetic, and magnetic indices were investigated by the DFT-B3LYP/6-311++G(d,p) computational method. Electron pumping through anomeric and then Schleyer hyperconjugative interaction increase the aromaticity of the phosphole ring in axial conformer of compounds 1–11 . Based on various types of aromaticity indices, the results showed that the phosphole ring in the axial position has far higher aromaticity than the equatorial position. The phosphole ring containing cyano groups shows an efficient anomeric effect and, as a result, higher aromaticity. Excellent correlations were observed between aromaticity indices with different backgrounds.  相似文献   

8.

Abstract  

Considerations based on the energetics of cyclic conjugation in individual rings indicate that benzocyclobutadieno-annelation has the opposite effect on local aromaticity in benzenoid hydrocarbons to benzo-annelation. This finding is now tested and corroborated by density functional theory (DFT) calculations of the geometry of all benzo- and benzocyclobutadieno-annelated congeners of anthracene. The harmonic oscillator model of aromaticity (HOMA) and some similar (geometry-based) indices of local aromaticity are found to have the same dependence on the modes of annelation as the molecular-graph-based energy effects.  相似文献   

9.
The degree of aromaticity of six-membered monoheterocycles with IV-VI group heteroatoms (C(6)H(5)X, where X = SiH, GeH, N, P, As, O(+), S(+), Se(+)) was analyzed using the results of ab initio calculations at the MP2/cc-pvtz level. Values of common aromaticity indices including those based on electronic delocalization properties, structural-dynamic features and magnetic properties all indicate high aromaticity of all considered heterocycles. A decrease in aromaticity is observed with increasing atomic number of the heteroatom, except in the case of the pyrylium cation. However, not all types of indices or even different indices within the same type correlate well among each other. Ring currents have been obtained at the HF/cc-pvdz level using the ipsocentric formulation. Ring current maps indicate that in the case of cationic heterocycles the ring current persists in all molecules under consideration. The different conclusions reached depending on the type of index used are a manifestation of the fact that when not dealing with hydrocarbons, aromaticity is ill-defined. One should always express explicitly which property of the molecules is considered to establish a degree of "aromaticity".  相似文献   

10.
An extension of the harmonic oscillator model of aromaticity (HOMA) model to systems with carbon–boron bonds is presented. Model parameters were estimated using experimental and theoretical bond lengths. It is shown that both approaches produce very similar HOMA models. In the second part of the article, the aromaticity levels of several model compounds containing carbon–boron bonds are calculated using the previously obtained parameters. The results of these calculations are compared with those provided by other aromaticity indices. The aromaticity of boron-containing compounds is also compared with the aromaticity of analogous compounds containing carbon and nitrogen.  相似文献   

11.
The AIM parameters at the ring critical point (the electron density and its Laplacian, the total electron energy density and both its components, potential and kinetic electron energy densities), have been intercorrelated with aromaticity indices: the geometry-based HOMA and the magnetism-based NICS, NICS(1), and NICS(1)(zz). A set of 33 phenylic rings having possibly a diversified aromatic character, and a set of 20 quasi-rings formed by intramolecular hydrogen and lithium bonds, have been taken into consideration. It has been found that the density of total electron energy, H, may serve as a new quantitative characteristic of pi-electron delocalization. The dependences between H values and aromaticity indices are correlated (cc(H/HOMA)=0.99, cc(H/NICS(1)zz)=0.95).  相似文献   

12.
Several definitions of an atom in a molecule (AIM) in three‐dimensional (3D) space, including both fuzzy and disjoint domains, are used to calculate electron sharing indices (ESI) and related electronic aromaticity measures, namely, Iring and multicenter indices (MCI), for a wide set of cyclic planar aromatic and nonaromatic molecules of different ring size. The results obtained using the recent iterative Hirshfeld scheme are compared with those derived from the classical Hirshfeld method and from Bader's quantum theory of atoms in molecules. For bonded atoms, all methods yield ESI values in very good agreement, especially for C–C interactions. In the case of nonbonded interactions, there are relevant deviations, particularly between fuzzy and QTAIM schemes. These discrepancies directly translate into significant differences in the values and the trends of the aromaticity indices. In particular, the chemically expected trends are more consistently found when using disjoint domains. Careful examination of the underlying effects reveals the different reasons why the aromaticity indices investigated give the expected results for binary divisions of 3D space. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011.  相似文献   

13.
A new method for analysing the partial structure of conjugated systems is proposed. The present method is applied to the most important partial structure, benzene, which is closely related to aromaticity. The calculated results are in accord with the previously proposed indices of aromaticity.  相似文献   

14.
The effect of benzene ring fusion on the aromaticity of cycl[3.2.2]azine was studied by calculating topological resonance energy (TRE), the percentage topological resonance energy (%TRE), and magnetic resonance energy (MRE). The bond resonance energy (BRE) and circuit resonance energy (CRE) indices were used to estimate the local aromaticity. Our BRE and CRE results show that the central nitrogen atom plays a significant role both in the global and local aromaticity of the compounds in our study, and contrary to what has been reported in the literature, none of these compounds are peripheral π‐electronic systems. In the case of benzene ring‐fused derivatives, benzene ring(s) exhibit relatively larger local aromaticity and reduce the local aromaticity of the central portion of cycl[3.2.2]azine to a level comparable to a corresponding non‐benzene fused parent system. Ring current results predict that a strong diamagnetic current flows around the whole molecular perimeter. The diatropic bond current results, as computed here, are in good agreement with the observed 1H‐NMR chemical shifts of these compounds.  相似文献   

15.
The aromaticity and local-aromaticity of a large set of polycyclic aromatic hydrocarbons (PAHs) is studied using multicenter delocalization indices from generalized population analysis and the popular nucleus independent chemical shift (NICS) index. A method for the fast computation of the NICS values is introduced, using the so-called pseudo-pi-method. A detailed examination is made of the multidimensional nature of aromaticity. The lack of a good correlation between the NICS and the multicenter delocalization indices is reported and the grounds discussed. It is shown through a thorough statistical analysis that the NICS values arise not only from local aromaticity of the benzenoid rings, but also from other circuits. It is shown that the NICS indices do not reveal the individual aromatic nature of a specific ring, contrary to the delocalization indices.  相似文献   

16.
Structures of selected polycyclic conjugated hydrocarbons with –B=B– and –BH–BH– moieties inserted in different places were calculated at the B3LYP/6-311++G** level and their aromatic properties evaluated. HOMA, NICS(0), NICS(1)zz, Λ and PDI indices were used for studying their aromatic properties. Both optimized planar (as in parent hydrocarbons) and non-planar structures were taken into account. It is shown that insertion of both types of boron groups disturbs and decreases the aromaticity of the corresponding hydrocarbons. The decreasing effect of the –BH–BH– group is much stronger. What is quite intriguing is that it appears that non-planar structures of the studied compounds have a little higher aromaticity than the strictly planar ones. Mutual correlations between results obtained by different aromaticity indices are calculated and thoroughly discussed.  相似文献   

17.
An ab initio study of six carbon-to-carbon identity proton transfers is reported. They refer to the benzenium ion/benzene (C6H7(+)/C6H6), the 2,4-cyclopentadiene/cyclopentadienyl anion (C5H6/C5H5(-)), and the cyclobutenyl cation/cyclobutadiene (C4H5(+)/C4H4) systems and their respective noncyclic reference systems, that is, [structure: see text], [structure: see text] and [structure: see text]. For the aromatic C6H7(+)/C6H6 and C5H6/C5H5(-) systems, geometric parameters and aromaticity indices indicate that the transition states are highly aromatic. The proton-transfer barriers in these systems are quite low, which is consistent with a disproportionately high degree of transition-state aromaticity. For the antiaromatic C4H5(+)/C4H4 system, the geometric parameters and aromaticity indices indicate a rather small degree of antiaromaticity of the transition state. However, the proton-transfer barrier is higher than expected for a transition state with a low antiaromaticity. This implies that another factor contributes to the barrier; it is suggested that this factor is angle and torsional strain in the transition state. The question whether charge delocalization at the transition state might correlate with the development of aromaticity was also examined. No such correlation was found, that is, charge delocalization lags behind proton transfer as is commonly observed in nonaromatic systems involving pi-acceptor groups.  相似文献   

18.
The concept of Clar's π-electron aromatic sextet was tested against a set of polycyclic aromatic hydrocarbons in neutral and doubly charged forms. Systems containing different types of rings (in the context of Clar's concept) were chosen, including benzene, naphthalene, anthracene, phenanthrene and triphenylene. In the case of dicationic structures both singlet and triplet states were considered. It was found that for singlet state dicationic structures the concept of aromatic sextet could be applied and the local aromaticity could be discussed in the context of that model, whereas in the case of triplet state dicationic structures Clar's model rather failed. Different aromaticity indices based on various properties of molecular systems were applied for the purpose of the studies. The discussion about the interdependence between the values of different aromaticity indices applied to neutral and charged systems in singlet and triplet states is also included.  相似文献   

19.
Aromaticity and conformational flexibility of the series of five-membered monoheterocycles with group 14–16 heteroatoms, having one or two lone pairs, were studied with ab initio methods using NICS, ASE and I 5 indices. For non-planar molecules like phosphole, aromaticity of their planar transition states was also studied, and a special modification of ASE index was proposed to that end. It was found that the presence of two lone pairs is generally preferable for aromaticity of all heterocycles except CPD and silolyl dianions. Heterocycles with group 16 heteroatoms have consistently lower aromaticity compared to other groups. A lot of structures should be classified as moderate aromatic and non-aromatic. Energies of out-of-plane deformation do not correlate with other indices studied, but reveal the same qualitative trends. Generally, aromaticity of five-membered monoheterocycles depends strongly on both heteroatom type and number of lone pairs on it.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号