首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
弹性杆的螺旋线平衡问题在DNA、纤维、海底电缆和输油管线等方面具有应用背景.Kirchhoff动力学比拟是分析弹性细杆平衡稳定性的有效方法.Kirchhoff模型中包括中心线无拉伸变形和截面无剪切变形的基本假定与生物大分子等软物质的实际状况有较大差异.基于精确Cosserat模型,考虑中心线的拉伸压缩变形和截面剪切变形,以及剪切变形引起杆中心线转动导致切线轴相对截面法线轴的偏离,以Euler角表达截面姿态,建立圆截面弹性杆的动力学普遍方程.在静力学范畴内讨论螺旋线平衡状态的Liapunov稳定性和Euler稳定性问题,导出稳定性条件及轴向力和扭矩的Euler临界值.证明螺旋杆平衡的静态Liapunov稳定性和Euler稳定性条件是动态Liapunov稳定性的必要条件.  相似文献   

2.
新型空间薄壁梁单元   总被引:2,自引:0,他引:2  
基于Timoshenko梁理论和Vlasov薄壁杆件约束扭转理论,建立了具有内部结点的新型空间薄壁截面梁单元.通过对弯曲转角和翘曲角采取独立插值的方法,考虑了横向剪切变形,扭转剪切变形及其耦合作用,弯曲变形和扭转变形的耦合以及二次剪应力等因素影响,由Hellinger-Reissner广义变分原理,推得单元刚度矩阵.算例表明所建模型具有良好的精度,可用于空间薄壁杆系结构的有限元分析.  相似文献   

3.
提出并证明了一类非齐次线性微分方程组的积分解法,并以求解受激光和横向力联合加载厚板的轴对称弯曲问题作为该方法的应用实例,籍此给出了考虑挤压效应、旋转惯性效应和剪切变形效应时厚板动态弯曲的扰度和转角公式。结果表明运用该定理求解问题具有规范、简明的特点。  相似文献   

4.
梁的横向变形会导致梁纵向缩短,建模过程中考虑梁横纵变形二次耦合项则存在动力刚化现象,这说明梁的纵向变形会对模型的广义刚度造成影响.对于做旋转运动的梁结构,旋转运动时还会受到离心力的作用而产生轴向拉力,轴向拉力同样也会引起梁的轴向变形,这种影响对粗短梁更加明显.以大范围运动中心刚体-Timoshenko梁模型为研究对象:首先,运用Timoshenko梁理论以及Hamilton原理建立含离心力的动力学模型;其次,引入非约束模态概念,采用Frobenius方法求解非约束模态振型函数以及固有频率;最后,通过数值仿真探究不同恒定转速时非约束模态与约束模态广义刚度的差异和非约束模态条件下离心力对模型的影响.  相似文献   

5.
Timoshenko梁理论中考虑了截面剪切变形的影响,推导了一种新的计算剪切系数的方法.首先采用悬臂梁纯弯曲变形条件下截面剪应力分布的精确解,基于能量原理得到了各种梁截面剪切系数新的表达式,然后推导了弯扭耦合变形条件下截面剪应力分布的精确解,进一步获得了该条件下截面的剪切系数.结果表明,悬臂梁端面作用力偏离截面的弯曲中心将使剪切系数变小,通过与Cowper计算结果的对比发现结果偏小,其原因是Cowper没有考虑与外力垂直的剪应力的影响,因此新的计算结果更优越.  相似文献   

6.
Timoshenko梁理论中考虑了截面剪切变形的影响,推导了一种新的计算剪切系数的方法,首先采用悬臂梁纯弯曲变形条件下截面剪应力分布的精确解,基于能量原理得到了各种梁截面剪切系数新的表达式,然后推导了弯扭耦合变形条件下截面剪应力分布的精确解,进一步获得了该条件下截面的剪切系数.结果表明,悬臂梁端面作用力偏离截面的弯曲中心将使剪切系数变小,通过与Cowper计算结果的对比发现结果偏小,其原因是Cowper没有考虑与外力垂直的剪应力的影响,因此新的计算结果更优越.  相似文献   

7.
采用微分求积方法(DQ方法)讨论了计及高阶横向剪切的正交各向异性弹性板的非线性弯曲问题.导出了非线性控制方程的DQ形式,利用推广的DQWB技巧处理了高阶矩的边界条件.进一步推广并运用新的分析技术简化了非线性方程的计算.为说明该方法的可靠性和有效性,将考虑剪切变形及不计剪切变形的薄板的数值结果与三维弹性解析解及其它数值解进行了比较,同时研究了数值结果的收敛性,并考察了不同的节点分布对收敛速度的影响A·D2还考察了几何、材料参数及横向剪切效应对正交各向异性板非线性弯曲的影响.分析结果表明横向剪切效应对正交各向异性中厚板的影响是显著的.  相似文献   

8.
非线性边界滑移挤压膜流动   总被引:1,自引:0,他引:1  
用一种包含初始滑移长度和临界剪切率的非线性边界滑移模型研究了两个球体间的挤压流体膜问题.研究发现初始滑移长度对低剪切率下的滑移行为起主要作用,而临界剪切率决定了高剪切率下的边界滑移程度.球体表面挤压流体膜的边界滑移量是与半径坐标相关的高度非线性函数.在挤压膜的中心点和远离中心点处由于低剪切率滑移量等于初始滑移长度,然而在高剪切率区域滑移长度迅速增加.球体挤压膜的流体动压力随着初始滑移长度的增加和临界剪切率的减小而减小,并且临界剪切率对流体动力的影响要比初始滑移长度大的多,当临界剪切率很小的情况下,流体动压随着最小膜厚的减小几乎不再增加.所用模型给出的理论预报和实验非常吻合.  相似文献   

9.
本文推广了文献[1]中的结论,在有限变形下证明了理想刚-塑性动力学中的两个间断定理,即证明了刚-塑性交界面上面力的连续性以及当刚-塑性交界面的运动方向是由塑性区向刚性区扩展时界面上变形率的连续性.此结论也适用于不忽略剪切变形和转动惯量的梁、板、壳结构.  相似文献   

10.
空间弹性变形梁动力学的旋量系统理论方法   总被引:1,自引:0,他引:1  
所谓空间弹性梁,即同时考虑受弯曲、拉伸和扭转等力作用而发生空间变形的梁.借助于刚体运动的旋量理论,引入了"变形旋量"这一概念,进而提出了空间弹性梁的旋量理论.在基本的运动学假设和材料力学理论基础上,分析并给出了梁的空间柔度.接着研究了空间弹性梁的动力学,用旋量理论分析了其动能和势能,从而得到了Lagrange算子.通过对边界条件和变形函数的讨论,进一步运用Rayleigh-Ritz方法计算了系统的振动频率.将空间弹性梁与纯弯曲、扭转或者拉伸等简单变形情况下的特征频率做了对比研究.最后,运用所提出的空间弹性梁理论研究了一关节轴线互相垂直的两空间柔性杆机械臂的动力学,通过动力学仿真发现了关节的刚性运动和空间柔性杆的弹性变形运动之间的耦合影响.该文的研究工作阐明了运用旋量系统理论解决具有空间弹性变形杆件的机构动力学问题的有效性.  相似文献   

11.
A formulation is presented for steady-state dynamic responses of rotating bending-torsion coupled composite Timoshenko beams (CTBs) subjected to distributed and/or concentrated harmonic loadings. The separation of cross section's mass center from its shear center and the introduced coupled rigidity of composite material lead to the bending-torsion coupled vibration of the beams. Considering those two coupling factors and based on Hamilton's principle, three partial differential non-homogeneous governing equations of vibration with arbitrary boundary conditions are formulated in terms of the flexural translation, torsional rotation and angle rotation of cross section of the beams. The parameters for the damping, axial load, shear deformation, rotation speed, hub radius and so forth are incorporated into those equations of motion. Subsequently, the Green's function element method (GFEM) is developed to solve these equations in matrix form, and the analytical Green's functions of the beams are given in terms of piecewise functions. Using the superposition principle, the explicit expressions of dynamic responses of the beams under various harmonic loadings are obtained. The present solving procedure for Timoshenko beams can be degenerated to deal with for Rayleigh and Euler beams by specifying the values of shear rigidity and rotational inertia. Cantilevers with bending-torsion coupled vibration are given as examples to verify the present theory and to illustrate the use of the present formulation. The influences of rotation speed, bending-torsion couplings and damping on the natural frequencies and/or shape functions of the beams are performed. The steady-state responses of the beam subjected to external harmonic excitation are given through numerical simulations. Remarkably, the symmetric property of the Green's functions is maintained for rotating bending-torsion coupled CTBs, but there will be a slight deviation in the numerical calculations.  相似文献   

12.
In this paper, analysis of a rotating shaft with stretching nonlinearity during passage through critical speeds is investigated. In the model, the rotary inertia and gyroscopic effects are included, but shear deformation is neglected. The nonlinearity is due to large deflection of the shaft. First, nonlinear equations of motion governing the flexural–flexural–extensional vibrations of the rotating shaft with non-constant spin are derived by the Hamilton principle. Then, the equations are simplified using stretching assumption. To analyze the non-stationary vibration of the rotating shaft, the asymptotic method is applied to the equations expressed in normal coordinates. Two analytical expressions, as function of system parameters that describe the amplitude and phase of motion during passage through critical speeds are derived. The effects of angular acceleration, stretching nonlinearity, eccentricity and external damping on maximum amplitude of the shaft are investigated. It is shown that the nonlinearity has important effect on maximum amplitude when the rotating shaft passing through critical speeds, especially in low angular acceleration. To validate the results of the perturbation method, numerical simulation is applied.  相似文献   

13.
A mathematical model incorporating the higher order deformations in bending is developed and analyzed to investigate the nonlinear dynamics of rotors. The rotor system considered for the present work consists of a flexible shaft and a rigid disk. The shaft is modeled as a beam with a circular cross section and the Euler Bernoulli beam theory is applied with added effects such as rotary inertia, gyroscopic effect, higher order large deformations, rotor mass unbalance and dynamic axial force. The kinetic and strain (deformation) energies of the rotor system are derived and the Rayleigh–Ritz method is used to discretize these energy expressions. Hamilton’s principle is then applied to obtain the mathematical model consisting of second order coupled nonlinear differential equations of motion. In order to solve these equations and hence obtain the nonlinear dynamic response of the rotor system, the method of multiple scales is applied. Furthermore, this response is examined for different possible resonant conditions and resonant curves are plotted and discussed. It is concluded that nonlinearity due to higher order deformations significantly affects the dynamic behavior of the rotor system leading to resonant hard spring type curves. It is also observed that variations in the values of different parameters like mass unbalance and shaft diameter greatly influence dynamic response. These influences are also presented graphically and discussed.  相似文献   

14.
The free bending vibration of rotating axially functionally graded (FG) Timoshenko tapered beams (TTB) with different boundary conditions are studied using Differential Transformation method (DTM) and differential quadrature element method of lowest order (DQEL). These two methods are capable of modelling any beam whose cross sectional area, moment of inertia and material properties vary along the beam. In order to verify the competency of these two methods, natural frequencies are obtained for problems by considering the effect of material non-homogeneity, taper ratio, shear deformation parameter, rotating speed parameter, hub radius and tip mass. The results are tabulated and compared with the previous published results wherever available.  相似文献   

15.
A continuous Timoshenko linear beam model immersed in a three-dimensional space is introduced to study the static and dynamic behavior of tower buildings. A schematization of the building as a periodic system with rigid floors connected by deformable elements (columns and shear walls) is considered. The rigid floors are endowed with six degrees of freedom (three displacements and three rotations). The constitutive equations of the equivalent beam (coarse model) are identified from a discrete model of the three-dimensional frame (fine model) via a homogenization procedure. A complete linear constitutive law is obtained, with axial force coupled with bending and shear force coupled with torsion. The first aim is to investigate the relative importance of the macro-shear and macro-bending contributions to the deformation of the building. Then, the ability of the coarse model to reproduce the local stress distribution of the fine model is checked. Finally, the representativeness of the coarse model for the detection of the natural frequencies of the fine model is analyzed.  相似文献   

16.
《Applied Mathematical Modelling》2014,38(21-22):4985-4994
A rigid–flexible coupling dynamic analysis is presented where a mass is attached to a massless flexible rod which rotates about an axis. The rod is limited to small deformation so that the mass is constrained to move in the plane of rotation. A strongly nonlinear model of the system is established based on the couplings between the elastic deflections of the mass and rigid rotation, in which the mass deflection and rigid rotation are both treated as unknown variables. The additional inertia forces on the mass and coupling mechanism are elucidated in the system model. In the case of varied but prescribed rigid rotation, a set of time-varying differential equations governing mass motion is obtained. The trajectories of mass motion are examined for the spin-up and spin-down rotation. Under constant rigid rotation, a set of ordinary differential equations is further attained, and the issues with dynamic frequencies and critical angular velocity of the system are analyzed. The effects of the centrifugal, Coriolis and tangential inertia forces on the dynamic responses are discussed.  相似文献   

17.
The nonlinear flexural vibration analysis of tapered Timoshenko beams is conducted. The equations of motion for tapered Timoshenko beams are established in which the effects of nonlinear transverse deformation, nonlinear curvature as well as nonlinear axial deformation are taken into account. The nonlinear fundamental frequencies of tapered Timoshenko beams with two simply supported or clamped ends are presented.  相似文献   

18.
根据修正的Timoshenko理论,在几何非线性中考虑了剪切变形和转动惯量,对黏弹性圆柱壳的动力稳定性进行了研究.根据Bubnov-Galerkin法,结合基于求积公式的数值方法,将问题简化为求解具有松弛奇异核的非线性积分-微分方程的问题.针对物理-力学和几何参数在大范围内的变化,研究壳体的动力特性,显示了材料的黏弹性对圆柱壳动力稳定性的影响.最后,比较了通过不同的理论得到的结果.  相似文献   

19.
Engineering systems, such as rolled steel beams, chain and belt drives and high-speed paper, can be modeled as axially translating beams. This article scrutinizes vibration and stability of an axially translating viscoelastic Timoshenko beam constrained by simple supports and subjected to axial pretension. The viscoelastic form of general rheological model is adopted to constitute the material of the beam. The partial differential equations governing transverse motion of the beam are derived from the extended form of Hamilton's principle. The non-transforming spectral element method (NTSEM) is applied to transform the governing equations into a set of ordinary differential equations. The formulation is similar to conventional FFT-based spectral element model except that Daubechies wavelet basis functions are used for temporal discretization. Influences of translating velocities, axial tensile force, viscoelastic parameter, shear deformation, beam model and boundary condition types are investigated on the underlying dynamic response and stability via the NTSEM and demonstrated via numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号