首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenomenology of a QCD-Pomeron model based on the exchange of a pair of non-perturbative gluons, i.e. gluon fields with a finite correlation length in the vacuum, is studied in comparison with the phenomenology of QCD chiral symmetry breaking, based on non-perturbative solutions of Schwinger-Dyson equations for the quark propagator including these non-perturbative gluon effects. We show that these models are incompatible, and point out some possibles origins of this problem.  相似文献   

2.
The Schwinger-Dyson equation of the fermion propagator in the massless vector theory is discussed. It is found that the Baker-Johnson-Willey solution in lowest approximation is in fact a confining solution: the Fermion propagator has no pole or cut in the time-like region. Discussions of homogeneous and inhomogeneous equations with momentum integration cut-off are also given in some detail.  相似文献   

3.
The effective gluon propagator constructed with the pinch technique is governed by a Schwinger-Dyson equation with special structure and gauge properties, that can be deduced from the correspondence with the background field method. Most importantly the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions, a property which allows for a meanigfull truncation. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles. The resulting integral equation, subject to a properly regularized constraint, is solved numerically, and the main features of the solutions are briefly discussed.  相似文献   

4.
We propoee the intermediate range QCD force singular like δ(q) by analysing the gluon propagator in the nonperturbative region from QCD sum rules. With the help of the Slavnov- Taylor-Ward identity we derive the equations for the nonperturbative quark propagator from the Schwinger-Dyson (SD) equation. Solutione for the quark propagator in two special cases are given. We find that the intermediate range force L also responsible for the chiral symmetry breaking in QCD.  相似文献   

5.
A non-perturbative approach is developed for investigation of the infrared problem in QCD at T ≠ 0 in the ghost-free axial gauge. The problem is solved by using a 3-dimensional theory within the exact Slavnov-Taylor identities and Schwinger-Dyson equations. The system of two non-linear integral equations for the structural functions of the gluon polarization tensor is obtained whose solution determines the infrared behavior of the temperature Green functions in the 4-dimensional QCD. The simplest solution of these equations which is the same as the first term of the perturbation expansion shows the presence of singularities in the gluon propagator at momenta pg2T, that cannot be eliminated by any choice of the gauge. The infrared instability of QCD at T ≠ 0 caused by these singularities is discussed.  相似文献   

6.
The dynamically generated effective gluon mass is known to depend non-trivially on the momentum, decreasing sufficiently fast in the deep ultraviolet, in order for the renormalizability of QCD to be preserved. General arguments based on the analogy with the constituent quark masses, as well as explicit calculations using the operator-product expansion, suggest that the gluon mass falls off as the inverse square of the momentum, relating it to the gauge-invariant gluon condensate of dimension four. In this article we demonstrate that the power law running of the effective gluon mass is indeed dynamically realized at the level of the non-perturbative Schwinger-Dyson equation. We study a gauge-invariant non-linear integral equation involving the gluon self-energy, and establish the conditions necessary for the existence of infrared finite solutions, described in terms of a momentum-dependent gluon mass. Assuming a simplified form for the gluon propagator, we derive a secondary integral equation that controls the running of the mass in the deep ultraviolet. Depending on the values chosen for certain parameters entering into the Ansatz for the fully dressed three-gluon vertex, this latter equation yields either logarithmic solutions, familiar from previous linear studies, or a new type of solutions, displaying power law running. In addition, it furnishes a non-trivial integral constraint, which restricts significantly (but does not determine fully) the running of the mass in the intermediate and infrared regimes. The numerical analysis presented is in complete agreement with the analytic results obtained, showing clearly the appearance of the two types of momentum dependence, well-separated in the relevant space of parameters. Several technical improvements, various open issues, and possible future directions, are briefly discussed.  相似文献   

7.
We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".  相似文献   

8.
Exploiting the relations between the expansion coefficients of Green's functions and those of β and γ functions in massless QFT, the summation up to the n-th non-leading logarithms is reduced to the solution of a system of linear differential equations, which in general differ from renormalization group equations. Applying this procedure to the gluon propagator the leading log approximation is modified near the mass shell by a constant factor only. Furthermore for the gluon propagator exponentiation in terms of the running coupling constant is argued to be restricted to leading logarithms.  相似文献   

9.
The general scale parameter, having the dimensions of mass squared, is dynamically generated in the QCD gluon sector. It is introduced through the difference between the regularized full gluon self-energy and its value at some finite point. It violates transversality of the full gluon self-energy. The Slavnov-Taylor identity for the full gluon propagator, when it is given by the corresponding equation of motion, is also violated by it. So in order to maintain both transversality and the identity it should be disregarded from the very beginning, i.e., put formally zero everywhere. However, we have shown how to preserve the above-mentioned identity at non-zero mass squared parameter. This allows one to establish the structure of the full gluon propagator when it is explicitly present. Its contribution does not survive in the perturbation theory regime, when the gluon momentum goes to infinity. At the same time, its contribution dominates the structure of the full gluon propagator when the gluon momentum goes to zero. We have also proposed a method how to restore transversality of the relevant gluon propagator in a gauge invariant way, while keeping the mass squared parameter “alive”.  相似文献   

10.
We report on the infrared limit of the quenched lattice Landau gauge gluon and ghost propagators as well as the strong-coupling constant computed from large asymmetric lattices. The infrared lattice propagators are compared with the pure power law solutions from Dyson-Schwinger equations (DSE). For the gluon propagator, the lattice data is compatible with the DSE solution. The preferred measured gluon exponent being ∼0.52, favouring a vanishing propagator at zero momentum. The lattice ghost propagator shows finite-volume effects and, for the volumes considered, the propagator does not follow a pure power law. Furthermore, the strong-coupling constant is computed and its infrared behaviour investigated.  相似文献   

11.
Quantum chromodynamics is studied at finite temperatures and densities using the temperature Green functions method. For the Green functions the renormalized Schwinger-Dyson equations are obtained and their qualitative properties are discussed. The equality of the renormalization constants for the equations obtained at T, μ ≠ 0 with those for quantum field theory is pointed out. General properties of the gluon polarization tensor are investigated at T, μ ≠ 0. The temperature Green functions are calculated within the one-loop approximation using both relativistic and axial gauges. The fulfilment of the Slavnov-Taylor identities is verified. The asymptotic behaviour of the polarization tensor at T, μ ≠ 0 is established and the excitation spectrum of quark-gluon plasma is found. Both Fermi and Bose excitations are considered and the gauge invariance of the spectra is demonstrated. The renormalization group extension of the dispersion laws into the regions of high temperatures and densities is presented. The exact representation of the thermodynamical potential in QCD is found in terms of the temperature Green functions. For the quark-gluon plasma the thermodynamical potential is calculated with the g3-term taken into account. The equation of state of the hot quark-gluon plasma is found and its properties are discussed. The complete evolutional diagram of the hadronic matter is outlined. The phase curve asymptotics, which put bounds on the quark-gluon plasma domain, are found for the two limiting cases (μ = 0, TT0; T = 0, μ → μ0). The phase transition of the hot quark-gluon plasma placed in external Abelian field is studied. The instability of such plasma has been found and the program of its stabilization is indicated. The infrared behaviour of the non-Abelian gauge theory is studied for finite temperatures when power divergencies are essential. The propagator of transverse gluons is shown to be singular for momenta |p| ˜ g2T and this cannot be avoided by summing the simplest bubble chains. The infrared asymptotic behaviour of the tree-gluon vertex is found and the results obtained are checked using the Slavnov-Taylor identities. The Green functions asymptotics found indicate either an instability of the quark-gluon plasma in the infrared momentum domain or the inconsistency of the perturbational methods. A non-perturbative approach to the infrared problem in QCD is developed within the axial gauge. The closed equations for the structure functions that determine the gluon polarization tensor are obtained by using the Slavnov-Taylor identities to found approximately the three-gluon vertex. It is shown that the solution of the equations obtained by iterations does not remove the infrared singularity from the temperature Green functions. The nonperturbative solution of such equations is discussed.  相似文献   

12.
We study quantum field models in indefinite metric. We introduce the modified Wightman axioms of Morchio and Strocchi as a general framework of indefinite metric quantum field theory (QFT) and present concrete interacting relativistic models obtained by analytical continuation from some stochastic processes with Euclidean invariance. As a first step towards scattering theory in indefinite metric QFT, we give a proof of the spectral condition on the translation group for the relativistic models.  相似文献   

13.
Within the framework of the Dyson-Schwinger equations in the axial gauge, and using a truncation procedure which respects the Ward-Takahashi identities, we study the effect that nonperturbative glue has on the quark propagator. We show that within this truncation scheme, the requirement of matching perturbative QCD at high momentum transfer leads to a multiplicatively renormalisable equation. Technically, the matching with perturbation theory is accomplished by the introduction of a transverse part to the quark-gluon vertex. In the case of an analytic gluon propagator, this truncation scheme can lead to chiral symmetry breaking only after the introduction of such a transverse vertex: massless solutions do not exist beyond a critical value of as. Using the gluon propagator that we previously obtained, we obtain small corrections to the quark propagator, which keeps a pole at the origin in the chiral phase.  相似文献   

14.
In previous papers we have outlined a program for deriving the infrared behavior of the axial gauge gluon propagator in a pure Yang-Mills theory. The program is based on an integral equation for the gluon propagator derived from the Dyson equation and the Ward identities. Here we present a solution to this equation, obtained numerically. The solution exhibits a Singularity in the infrared, and therefore presumably predicts confinement of color. The method is supposed to be exact in the infrared. Away from the infrared, therefore, our solution is only approximate. Nevertheless, even in the ultraviolet, our solution for the propagator is not very different from the known asymptotic freedom result, so it may be that it is a reasonable approximation over the entire range of momentum.  相似文献   

15.
We study the effect of magnetic interactions on screening in abelian theories. By solving the coupled Schwinger-Dyson equations for the gauge-field propagator and the vertex function in the high momentum region, we find a nonperturbative solution whose existence implies that the screening in these theories is suppressed and the zero-charge problem may be absent. We speculate about the possible realization of this scenario in strongly coupled QED.  相似文献   

16.
A nonperturbative approach aimed at the localization of the QCD chiral phase transition atT, π≠0 is presented. We identify this transition with the dynamical quark mass peculiarity which results from the selfconsistent solution of the Schwinger-Dyson equation for the quark propagator. The specific model of the effective quark-gluon interaction, based both on the peculier interpolation for the running coupling constant and on the nonperturbative gluon magnetic and electric masses is exploited. The numerical estimates of the phase diagram are presented and it is shown that phase peculiarities are determined not only by the ultraviolet properties of QCD but also by its infrared structure. The obtained results are discussed, compared with other approaches and a possible interpretation is given.  相似文献   

17.
Gluon propagator is investigated for pure Yang-Mills SU(3) gauge theory in field-strength approach. It is found that instantons provide a homogeneous solid-like medium background which generates finite nonzero momentum gluon propagator and gluon receives effective mass.  相似文献   

18.
A nonperturbative approach aimed at the localization of the QCD chiral phase transition atT, π≠0 is presented. We identify this transition with the dynamical quark mass peculiarity which results from the selfconsistent solution of the Schwinger-Dyson equation for the quark propagator. The specific model of the effective quark-gluon interaction, based both on the peculier interpolation for the running coupling constant and on the nonperturbative gluon magnetic and electric masses is exploited. The numerical estimates of the phase diagram are presented and it is shown that phase peculiarities are determined not only by the ultraviolet properties of QCD but also by its infrared structure. The obtained results are discussed, compared with other approaches and a possible interpretation is given.  相似文献   

19.
The Chiral Phase Transition in QCD is studied analytically by looking at truncations of the Schwinger-Dyson equation for the quark self-mass. We find that the usual implementation of the gluon propagator at non-zero temperature is far too simple. When the gluons are given the correct qualitative non-zero temperature behaviour, the calculation of the critical temperature changes significantly.  相似文献   

20.
We derive the form of the infrared gluon propagator by proving a mapping in the infrared of the quantum Yang–Mills and λ?4λ?4 theories. The equivalence is complete at a classical level. But while at a quantum level, the correspondence is spoiled by quantum fluctuations in the ultraviolet limit, we prove that it holds in the infrared where the coupling constant happens to be very large. The infrared propagator is then obtained from the quantum field theory of the scalar field producing a full spectrum. The results are in fully agreement with recent lattice computations. We get a finite propagator at zero momentum, the ghost propagator going to infinity as 1/p2+2κ1/p2+2κ with κ=0κ=0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号