首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We describe an efficient protocol to effect multisite conjugation reactions to oligomers on solid-phase support. Sequence-specific N-substituted glycine "oligopeptoids" were utilized as substrates for azide-alkyne cycloaddition reactions. Diverse groups, including nucleobases and fluorophores, were conjugated at up to six positions on peptoid side chains with yields ranging from 88 to 96%. This strategy will be broadly applicable for generating polyvalent displays on peptides and other scaffolds, allowing precise control of spacing between the displayed groups.  相似文献   

2.
Covalent macrocyclic constraints can be readily installed on N-substituted glycine "peptoid" oligomer substrates. Cu(I)-catalyzed [3+2] cycloaddition reactions were conducted on solid support to ligate peptoid side chain azide and alkyne functionalities. Intramolecular macrocycle formation is facilitated by preorganizing the reactive groups across one turn of the helical secondary structure. These results confirm that conformational ordering can be exploited to assist the macrocyclization of folded oligomers.  相似文献   

3.
The synthesis of a molecular brush was accomplished by combining step‐growth polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization in a “grafting from” methodology. A symmetrical N‐alkyl urea peptoid sixmer containing alkyne functional groups was prepared using a divergent strategy, and the structure of the product was confirmed using NMR spectroscopy and mass spectrometry. A step‐growth process was used to prepare a linear poly(N‐alkyl urea peptoid) by reacting the diamine‐functionalized N‐alkyl urea peptoid sixmer with a diisocyanate. RAFT chain transfer agents were coupled to the poly(N‐alkyl urea peptoid) backbone through a copper‐catalyzed azide/alkyne cycloaddition reaction. The afforded macro‐RAFT agent was used to sequentially polymerize styrene and tert‐butyl acrylate block copolymer arms from the poly(N‐alkyl urea peptoid) backbone. The tert‐butyl groups were removed using dilute trifluoroacetic acid affording hydrophilic polyacrylic acid segments. The molecular brushes were observed to generate micelles in aqueous solution. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Strain promoted cycloaddition is presented as a tool for RNA conjugation on the solid phase; RNA-cyclooctyne conjugates are prepared by cycloaddition to both azide (strain-promoted azide-alkyne cycloaddition, SPAAC) and nitrile oxide dipoles (strain-promoted nitrile oxide-alkyne cycloaddition, SPNOAC). The conjugation is compatible with 2'-OMe blocks and with 2'-O-TBDMS protection on the ribose moieties of the sugar. Nitrile oxide dipoles are found to be more reactive click partners than azides. The conjugation proceeds within 10 min in aqueous solvents, at room temperature without any metal catalyst and tolerates dipoles of varying steric bulk and electronic demands, including pyrenyl, coumarin and dabcyl derivatives.  相似文献   

5.
Modifed oligonucleotides are routinely employed as analytical probes for use in diagnostics, e.g. in the examination of specific RNA sequences for infectious diseases, however, a major limiting factor in oligonucleotide-based diagnostics is poor cellular uptake of naked oligonucleotides. This problem can be overcome by covalent attachment of a so-called 'cell-penetrating peptide' to form an oligonucleotide peptide conjugate. Stepwise solid phase synthesis of such a conjugate is difficult and expensive due to the conflicting chemistries of oligonucleotides and peptides. A simple approach to overcome this is post-synthetic conjugation. Diels-Alder cycloaddition is an attractive methodology for oligonucleotide peptide conjugation; the reaction is fast, chemoselective and the reaction rate is greatly enhanced in aqueous media - ideal conditions for biological moieties. An oligodeoxyribonucleotide sequence has been derivatised with a series of dienes at the 5'-terminus, using a series of unique dienyl-modified phosphoramidites, and investigation into the effect of diene type on the efficiency of conjugation, using Diels-Alder cycloaddition with a maleimido-derivatised cell-penetrating (TAT) peptide, has been performed. This led to the observation that the optimal diene for conjugation was cyclohexadiene, allowing conjugation of oligodeoxyribonucleotides to a cell-penetrating peptide by Diels-Alder cycloaddition for the first time.  相似文献   

6.
DNA-encoded combinatorial synthesis provides efficient and dense coverage of chemical space around privileged molecular structures. The indole side chain of tryptophan plays a prominent role in key, or “hot spot”, regions of protein–protein interactions. A DNA-encoded combinatorial peptoid library was designed based on the Ugi four-component reaction by employing tryptophan-mimetic indole side chains to probe the surface of target proteins. Several peptoids were synthesized on a chemically stable hexathymidine adapter oligonucleotide “hexT”, encoded by DNA sequences, and substituted by azide-alkyne cycloaddition to yield a library of 8112 molecules. Selection experiments for the tumor-relevant proteins MDM2 and TEAD4 yielded MDM2 binders and a novel class of TEAD-YAP interaction inhibitors that perturbed the expression of a gene under the control of these Hippo pathway effectors.  相似文献   

7.
Four variants of conjugation of aminoadamantanes with 1,2,3-triazole- and ditriazolecontaining spacers by copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition of azido- and propargyl-containing aminoadamantanes were suggested.  相似文献   

8.
The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) has been established as a powerful coupling technology for the conjugation of proteins, nucleic acids, and polysaccharides. Nevertheless, several shortcomings related to the presence of Cu, mainly oxidative degradation by reactive oxygen species and sample contamination by Cu, have been pointed out. This Minireview discusses key aspects found in the development of the efficient and benign functionalization of biomacromolecules through CuAAC, as well as the Cu-free strain-promoted azide-alkyne cycloaddition (SPAAC).  相似文献   

9.
Cyclic peptoids     
Foldamers are an intriguing family of biomimetic oligomers that exhibit a propensity to adopt stable secondary structures. N-Substituted glycine oligomers, or "peptoids", are a prototypical example of these foldamer systems and are known to form a helix resembling that of polyproline type I. Ongoing studies seek to improve the stability of peptoid folding and to discover new secondary structure motifs. Here, we report that peptoids undergo highly efficient head-to-tail macrocyclization reactions. A diverse array of peptoid sequences from pentamers to 20mers were converted to macrocyclic products within 5 min at room temperature. The introduction of the covalent constraint enhances conformational ordering, allowing for the crystallization of a cyclic peptoid hexamer and octamer. We present the first X-ray crystallographic structures of peptoid hetero-oligomers, revealing that peptoid macrocycles can form a reverse-turn conformation.  相似文献   

10.
We have previously demonstrated that conjugation of small molecule ligands to small interfering RNAs (siRNAs) and anti-microRNAs results in functional siRNAs and antagomirs in vivo. Here we report on the development of an efficient chemical strategy to make oligoribonucleotide-ligand conjugates using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) or click reaction. Three click reaction approaches were evaluated for their feasibility and suitability for high-throughput synthesis: the CuAAC reaction at the monomer level prior to oligonucleotide synthesis, the solution-phase postsynthetic "click conjugation", and the "click conjugation" on an immobilized and completely protected alkyne-oligonucleotide scaffold. Nucleosides bearing 5'-alkyne moieties were used for conjugation to the 5'-end of the oligonucleotide. Previously described 2'- and 3'-O-propargylated nucleosides were prepared to introduce the alkyne moiety to the 3' and 5' termini and to the internal positions of the scaffold. Azido-functionalized ligands bearing lipophilic long chain alkyls, cholesterol, oligoamine, and carbohydrate were utilized to study the effect of physicochemical characteristics of the incoming azide on click conjugation to the alkyne-oligonucleotide scaffold in solution and on immobilized solid support. We found that microwave-assisted click conjugation of azido-functionalized ligands to a fully protected solid-support bound alkyne-oligonucleotide prior to deprotection was the most efficient "click conjugation" strategy for site-specific, high-throughput oligonucleotide conjugate synthesis tested. The siRNA conjugates synthesized using this approach effectively silenced expression of a luciferase gene in a stably transformed HeLa cell line.  相似文献   

11.
[reaction: see text] The key [4 + 4] cycloaddition in the biosynthesis of epoxytwinol A has been established by theoretical calculations to comprise of three processes. The first step is formation of the C8-C8' bond generating a biradical intermediate. Next, rotation about the C8-C8' bond occurs, and finally the C1-C1' bond is formed. Biradicals stabilized by conjugation and two hydrogen bonds are essential for realization of this rare thermal [4 + 4] cycloaddition.  相似文献   

12.
By connecting a quinine or quinidine moiety to the peptoid chain through the C9‐position carbamate group, we synthesized two new chiral selectors. After immobilizing them onto 3‐mercaptopropyl‐modified silica gel, two novel chiral stationary phases were prepared. With neutral, acid, and basic chiral compounds as analytes, we evaluated these two stationary phases and compared their chromatographic performance with chiral columns based on quinine tert‐butyl carbamate and the previous peptoid. From the resolution of neutral and basic analytes under normal‐phase mode, it was found that the new stationary phases exhibited much better enantioselectivity than the quinine tert‐butyl carbamate column; the peptoid moiety played an important role in enantiorecognition, which controlled the elution orders of enantiomers; the assisting role of the cinchona alkaloid moieties was observed in some separations. Under acid polar organic phase mode, it was proved that cinchona alkaloid moieties introduced excellent enantiorecognitions for chiral acid compounds; in some separations, the peptoid moiety affected enantioseparations as well. Overall, chiral moieties with specific enantioselectivity were demonstrated to improve the performance of peptoid chiral stationary phase efficiently.  相似文献   

13.
The rearrangement of trifluoromethanesulfinates to trifluoromethanesulfones (“triflones”) was developed as a synthetic method for obtaining these compounds Their utility as reagents for the construction of carbon skeletons is explored with regard to reactions such as alkylation, conjugation addition, and cycloaddition. In addition, the conversion of triflones to more common functionality is described.  相似文献   

14.
Lin PC  Ueng SH  Yu SC  Jan MD  Adak AK  Yu CC  Lin CC 《Organic letters》2007,9(11):2131-2134
The Cu(I)-catalyzed alkyne-azide [2 + 3] cycloaddition has been demonstrated to be an effective and orthogonal conjugation reaction to covalently immobilize biomolecules on magnetic nanoparticles (MNPs). The azido group on the MNP surface provides better conjugation efficiency with alkynated molecules. Moreover, the C-terminal alkynated protein was site-specifically immobilized on MNP. The protein binding activity presented by site-specific immobilization is higher than that by random amide bond formation.  相似文献   

15.
The versatility of the isoxazole generating nitrile oxide-alkyne Huisgen cycloaddition for provision of chemically modified oligonucleotides has been extended; in a novel approach isoxazole conjugated oligodeoxyribonucleotides have been constructed by phosphoramidite chemistry of isoxazole derivatives previously generated by nitrile oxide-alkyne click chemistry. The conjugation involves manual solid phase synthesis at room temperature in aqueous ethanol and proceeds in high yield.  相似文献   

16.
A series of peptoid oligomers were designed as helical, cationic, and facially amphipathic mimics of the magainin-2 amide antibacterial peptide. We used circular dichroism spectroscopy to determine the conformation of these peptoids in aqueous buffer and in the presence of bacterial membrane-mimetic lipid vesicles, composed of a 7:3 mol ratio of POPE:POPG. We found that certain peptoids, which displayed characteristically helical CD in buffer and lipid vesicles, exhibit selective (nonhemolytic) and potent antibacterial activity against both Gram-positive and Gram-negative bacteria. In contrast, peptoids that exhibit weak CD, reminiscent of that of a peptide random coil, were ineffective antibiotics. In a manner similar to the natural magainin peptides, we find a correlation between peptoid lipophilicity and hemolytic propensity. We observe that a minimum length of approximately 12 peptoid residues may be required for antibacterial activity. We also see evidence that a helix length between 24 and 34 A may provide optimal antibacterial efficacy. These results provide the first example of a water-soluble, structured, bioactive peptoid.  相似文献   

17.
Nano-electrospray tandem mass spectrometry (nano-ES-MS/MS) was used to record collision-induced dissociation (CID) spectra of a set of peptoid-peptide hybrids and the complete peptoid derived from the phosphopeptide Ac-pTyr-Glu-Thr-Leu-NH(2) (1). The presence of B and Y'-type fragment ions in the tandem mass spectra of the protonated molecular ions [M + H](+) allowed confirmation of sequence similar to mass spectrometric sequence analysis in peptides. In the isomeric peptoid compounds studied, one or several amino acid residues were replaced by peptoid residues (N-substituted glycine residues), which resulted in characteristic tandem mass spectra with differently increased relative abundances of Y'-and B-type fragment ions. The increment of a particular Y'-ion was directly correlated to the position of a peptoid residue present. In addition to these increased peak intensities, other characteristic peaks were also observed compared with the spectrum of reference peptide 1. When a peptoid phosphotyrosine was incorporated, the presence of this residue was apparent from the occurrence of a relatively intense peak at m/z 187 representing the positively charged side-chain of phosphotyrosine, which was almost absent in the spectrum of the reference peptide 1. Since the threonine side-chain had to be translated into the homo peptoid analog this substitution was apparent from the presence of [M + H](+) and fragment ions 14 mass units higher than observed in the spectrum of the reference phosphopeptide 1. The presence of an NLeu peptoid residue could be confirmed by the specific fragmentation of the immonium ion showing an intense peak in its tandem mass spectrum at m/z 57, which results from the loss of an neutral imine molecule leading to a positively charged [C(4)H(9)](+) ion. By means of these mass spectrometric characteristics, all isomeric peptoid compounds could be distinguished from each other and characterized. The methods used appear to be very useful in future studies of peptoids and peptoid-peptide hybrids.  相似文献   

18.
The use of hydrazones as a new type of submonomer in peptoid synthesis is described, giving access to peptoid monomers that are structure-inducing. A wide range of hydrazones were found to readily react with α-bromoamides in routine solid phase peptoid submonomer synthesis. Conditions to promote a one-pot cleavage of the peptoid from the resin and reduction to the corresponding N-alkylamino side chains were also identified, and both the N-imino- and N-alkylamino glycine residues were found to favor the trans-amide bond geometry by NMR, X-ray crystallography, and computational analyses.

The use of hydrazones as a new type of submonomer in peptoid synthesis is described, giving access to peptoid monomers that are structure-inducing.  相似文献   

19.
Peptoids, or oligomers of N-substituted glycine, are an important class of non-native polymers whose close structural similarity to natural alpha-peptides and ease of synthesis offer significant advantages for the study of biomolecular interactions and the development of biomimetics. Peptoids that are N-substituted with alpha-chiral aromatic side chains have been shown to adopt either helical or "threaded loop" conformations, depending upon solvent and oligomer length. Elucidation of the factors that impact peptoid conformation is essential for the development of general rules for the design of peptoids with discrete and novel structures. Here, we report the first study of the effects of pentafluoroaromatic functionality on the conformational profiles of peptoids. This work was enabled by the synthesis of a new, alpha-chiral amine building block, (S)-1-(pentafluorophenyl)ethylamine (S-2), which was found to be highly compatible with peptoid synthesis (delivering (S)-N-(1-(pentafluorophenyl)ethyl)glycine oligomers). The incorporation of this fluorinated monomer unit allowed us to probe both the potential for pi-stacking interactions along the faces of peptoid helices and the role of side chain electrostatics in peptoid folding. A series of homo- and heteropeptoids derived from S-2 and non-fluorinated, alpha-chiral aromatic amide side chains were synthesized and characterized by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. Enhancement of pi-stacking by quadrupolar interactions did not appear to play a significant role in stabilizing the conformations of heteropeptoids with alternating fluorinated and non-fluorinated side chains. However, incorporation of (S)-N-(1-(pentafluorophenyl)ethyl)glycine monomers enforced helicity in peptoids that typically exhibit threaded loop conformations. Moreover, we found that the incorporation of a single (S)-N-(1-(pentafluorophenyl)ethyl)glycine monomer could be used to selectively promote looped or helical structure in this important peptoid class by tuning the electronics of nearby heteroatoms. The strategic installation of this monomer unit represents a new approach for the manipulation of canonical peptoid structure and the construction of novel peptoid architectures.  相似文献   

20.
[reaction: see text] Various pseudo-oligosacchardies and amino acid glycoconjugates were synthesized via an intermolecular 1,3-dipolar cycloaddition ("click") reaction using easily accessible carbohydrate and amino acid derived azides and alkynes as building blocks. It is pertinent to mention that the conjugation reaction is highly regioselective and high yielding and can be carried out under mild reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号