首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of UV-irradiation on the properties of ZrO2 and TiO2 gel films prepared from corresponding metal-butoxides modified with acetylacetone (AcAc) or benzoylacetone (BzAc) have been studied. It was found that the chelate bonds of -diketones remaining in the gel films were dissociated by the UV-irradiation. The UV-irradiation also changed the properties of the gel films such as solubility; the solubility in acidic solutions was decreased for ZrO2 gel films modified with AcAc and TiO2 gel films modified with BzAc became insoluble in alcohol. Based on these findings, a new fine-patterning process has been established, which enables us to make fine-patterns of ZrO2 and TiO2 films on a variety of substrates.  相似文献   

2.
The calcination of Nb2O5 prepared by the Pecchini method was investigated using thermal analysis. The polymer precursor was prepared with different citric acid/ethylene glycol (CA/EG) and citric acid/niobium precursor (CA/Nb) molar ratios. The results suggest a strong influence of the CA/EG molar ratio, mainly on the polymerization degree. The CA/Nb ratio also modifies the degradation process of the precursor solution. The effect of the precursor compositional variation was also observed in the oxide structure, as well as in its electrochemical and electrochromic behavior. Films prepared using high CA/EG and a Nb salt precursor amount have the highest values of charge density and coloration efficiency. Moreover XRD data for this sample show a crystalline structure while the samples prepared with low CA/EG ratio are amorphous.  相似文献   

3.
Fe2O3, Fe3O4 films have been prepared from Fe(OCH2CH(CH3)2)3–(CH3)2CHCH2OH–2.2′-diethanola- mine (DEA)–poly(vinylpyrrolidone) (PVP) solutions by the spin-(SC) and dip-coating (DC) technique on SiO2 and Si substrates. The maximum film thickness achieved without crack formation has been increased by incorporation of PVP (relative molecular weights 40000 and 360000) into the precursor solution. The stability of the precursor solutions was remarkably increased by addition of DEA. Compact, dense, and crack-free Fe2O3 films with thicknesses 900 nm (DC), 450 nm (SC), have been obtained via single-step deposition cycle. Higher-molecular-weight PVP has been more effective in increasing the thickness. The minimum concentration of DEA, which results in pronounced increase of solutions stability, is about R P (n(DEA)/n(Fe) = 0.1). The high content of carboneous residue in the pyrolysed Fe2O3 films promotes the formation of Fe3O4 films via reduction in a gas flow of H2/N2 gas mixture. Microstructure, surface morphology, and magnetic properties of the films have been also investigated using SEM, AFM, and SQUID, respectively.  相似文献   

4.
Al2O3 and TiO2 thin films were deposited by atomic layer deposition at 80-250 °C on various polymeric substrates such as polymethylmethacrylate (PMMA), polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE) and ethylenetetrafluoroethylene (ETFE). The films were studied with FESEM, EDX, XRD, contact angle measurements and adhesion tests. The film growth rates on the thermoplastics were close to the corresponding growth rates on Si substrates. The adhesion of the films was good on PEEK and poor on PTFE. All coated surfaces showed lower water contact angles than the uncoated thermoplastics. Furthermore, the water contact angles on all TiO2-coated surfaces decreased upon UV illumination, most efficiently with crystalline TiO2 coatings.  相似文献   

5.
Electronic properties of electrochemically formed oxide films on Nb were studied by photocurrent and differential capacitance measurements in 0.025 M KH2PO4+0.025 M Na2HPO4 electrolyte, pH 6.9. Oxide films of n-type conductivity were formed galvanostatically for final potentials ranging from 4 to 230 V. Measurements were performed in two potential regions, which correspond to formation of a depleted layer of variable thickness at relatively low potentials, and to complete depletion of oxide films of electronic charge carriers at higher potentials. In the first potential region the behavior of both capacitance and photocurrent, was governed by a build up of a depleted layer of potential dependent thickness. In the second, high potential, region, which extends up to the oxide film formation potential, the photocurrent and capacitance of oxide films in most features followed the trends typical of dielectric films containing defects and traps. The photocurrent and capacitance measurements on presumably dielectric oxide films formed on Ta were staged for comparison. The capacitance–potential measurements performed in the first potential region enabled us to construct the ionized donor concentration profile across the Nb2O5 film width. The limitations on the use of the CE profiling method for electrochemically formed oxide layers are considered.  相似文献   

6.
The structure of Nb2Mo3O14 double oxide is refined from powder data using synchrotron radiation and the anomalous scattering effect; space group P $ \bar 4 The structure of Nb2Mo3O14 double oxide is refined from powder data using synchrotron radiation and the anomalous scattering effect; space group P 21 m is found for the material. It is demonstrated that in the tetragonal unit cell with parameters a = 23.173 ?, c = 4.0027 ? Nb5+ and Mo6+ ions are stochastically distributed in MO6 octahedra and MO7 pentagonal bipyramids of the polygonal network structure of the Mo5O14 type. Original Russian Text Copyright ? 2008 by T. Yu. Kardash, L. M. Plyasova, V. M. Bondareva, and A. N. Shmakov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 4, pp. 729–735, May–June, 2008.  相似文献   

7.
A set of anatase titanium dioxide (TiO2) films coated on foam nickel that modified by Al2O3 films as transition layer (indicated as TiO2/Al2O3 films) were synthesized via sol-gel route. The bulk and surface properties of the TiO2/Al2O3 films were characterized by thermal gravimetric and differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), and BET. The photocatalytic activities of TiO2/Al2O3 films were investigated based on the degradation of gaseous acetaldehyde under ultraviolet (UV) irradiation. The foam nickel is a promising substrate material in practical applications because of its excellent hydrodynamic properties for gas passing. The TiO2/Al2O3 composite films showed much higher photocatalytic activity and stability for degradation of gaseous acetaldehyde than the onefold TiO2 films. The significant enhancement in photocatalytic activity and stability can be ascribed to the coating of Al2O3 transition layer, which concentrates the target substances around TiO2 particles and increases the specific surface area (SSA) of the substrate (the SSAs of bare foam nickel and Al2O3 modified foam nickel are 0.12 and 113.7 m2/g, respectively) to provide more sites for TiO2 loading.  相似文献   

8.
Nb2O5 thin films were prepared by the Pechini method. The effect of the film crystallinity on the electrochemical and electrochromic properties was investigated. A relationship between the crystalline structure and the Li+ intercalation/extraction process, stability and kinetics was observed. A significant decrease in the electrochemical response was observed as a function of the number of cycles for films treated at 400 and 450 °C. However, as the calcination temperature increases this effect disappears. XRD studies shown that at 400 °C, the material is amorphous, evolving to orthorhombic phase. The transmittance variation as well as the coloration efficiency increases as the temperature is increased. In the initial cycles the intercalation charge is higher for the amorphous oxide than for the orthorhombic phase. However, the variation in the optical density is small. On the other hand, the charge of the orthorhombic phase oxide does not change. These results suggest that there are two different processes associated with Li+ intercalation, but only one of them leads to the coloration process.  相似文献   

9.
Transparent glasses of various compositions in the system (100−x)Li2B4O7x(SrO-Bi2O3-Nb2O5) (where x=10, 20, 30, 40, 50 and 60, in molar ratio) were fabricated via splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses. X-ray powder diffraction (XRD) and transmission electron microscopic studies confirmed the amorphous nature of the as-quenched and crystallinity in the heat-treated samples. Fluorite phase formation prior to the perovskite SrBi2Nb2O9 phase was analyzed by both the XRD and high-resolution transmission electron microscopy. Dielectric and the optical properties (transmission, optical band gap and Urbach energy) of these samples have been found to be compositional dependent. Refractive index was measured and compared with the values predicted by Wemple-Didomemenico and Gladstone-Dale relations. The glass nanocomposites comprising nanometer-sized crystallites of fluorite phase were found to be nonlinear optic active.  相似文献   

10.
Half-metallic Fe3O4 films grown on a Si (100) substrate with a tantalum (Ta) buffer layer were prepared by DC magnetron reactive sputtering. Primary emphasis was placed on magnetic field growth of Fe3O4 thin film. The experiment's results showed that applying an external magnetic field to the samples during the growth was efficient to promote the polycrystalline Fe3O4 growth along certain directions. The magnetoresistance (MR) was also tested for comparison of the samples prepared with and without an external magnetic field, and showed that applying an external magnetic field can promote the MR values.  相似文献   

11.
An electrochemical quartz crystal microbalance (EQCM) study of RuO2 thin films, prepared by the sol-gel precursor method, is presented. The X-ray diffraction (XRD) analysis demonstrates that RuO2 films were crystallized in the rutile phase and scanning electron microscopy investigations indicated the formation of a smooth surface. Cyclic voltammetry and EQCM studies were performed simultaneously in order to investigate the charging processes of the RuO2 films in 0.1 M HClO4. The voltammetric and mass versus potential responses present three well-defined regions associated with the RuO2 redox couples. Based on these results and on the mass-charge relationships, the corresponding charging mechanisms are proposed. In the potential region governed by the Ru3+/Ru4+ redox couple, the mass-charge relation can be associated with the double-injection of protons and electrons. The other regions correspond to water release and oxyhydroxide species formation during charging.  相似文献   

12.
Nanostructured coatings have recently attracted increasing interest because of the possibilities of synthesizing materials with unique physical-chemical properties. Highly sophisticated surface related properties, such as optical, magnetic, electronic, catalytic, mechanical, chemical and tribological properties can be obtained by advanced nanostructured coatings, making them attractive for various industrial applications. In this report we describe our efforts at developing methodology for the fabrication of SrFeO3-x based thin films using a modified Pechini method. Thin films of SrFeO3-x were fabricated using spin coating and a drop coating method developed in-house on Al2O3 and Si- substrates. The films annealed at 600°C for one hour show a perovskite phase. The grain size increases with increase in annealing temperature. The influence of various variables such as metal to chelant ratio, drying control reagents, calcination conditions, substrate type and mode of film formation were studied using XRD, optical microscopy, SEM and AFM.  相似文献   

13.
Semiconducting nanostructured iron sulfide thin films were prepared by aerosol chemical vapor deposition at 673 and 723?K from newly synthesized iron complex of dithiocarbo-1,2,3,4-tetrahydroquinoline [Fe(S2CNC9H10)2]. The degree of film surface roughness was determined by atomic force microscopy. The nature of the deposited thin films formed was determined by a combination of EDX analysis and glancing angle X-ray diffraction.  相似文献   

14.
Starting from the aqueous solutions of metal nitrates with citric acid and polyethylene glycol (PEG) as additives, BaMgAl10O17:Eu2+ (BAM:Eu2+) phosphors were prepared by a two-step spray pyrolysis (SP) method. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectra were used to characterize the resulted BAM:Eu2+ phosphors. The obtained BAM:Eu2+ phosphor particles have spherical shape, submicron size (0.5-3 μm). The effects of process conditions of the spray pyrolysis, such as molecular weight and concentration of PEG, on the morphology and luminescence properties of phosphor particles were investigated. Adequate amount of PEG was necessary for obtaining spherical particles, and the optimum emission intensity could be obtained when the concentration of PEG was 0.03 g/ml in the precursor solution. Moreover, the emission intensity of the phosphors increased with increasing of metal ion concentration in the solution. Compared with the BAM:Eu2+ phosphor prepared by citrate-gel method, spherical BAM:Eu2+ phosphor particles showed a higher emission intensity.  相似文献   

15.
YBa2Cu3Ox (Y-123) and Bi2Sr2Ca1Cu2Ox (Bi-2212) films on various substrates have been prepared by Metal-Organic Deposition starting from different metallorganic fluorine-free compounds and using a very simple instrumentation. The processing conditions include a rapid pyrolysis step in air and an annealing step in oxygen for Y-123 and in air for Bi-2212. The films obtained have been characterized by X-ray diffraction (XRD) and the formation of a superconducting phase of Y-123 or Bi-2212 was confirmed measuring the critical temperature (T c) with Ac-susceptibility and resistive measurements. Microstructure and final cationic ratios have been studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).  相似文献   

16.
Highly (110)-oriented Ba0.65Sr0.35TiO3 films were deposited on Pt/LaNiO3/SiO2/Si substrates by a sol–gel method. It was found that the (110)-preferred Pt film was very effective for growing (110)-oriented ferroelectric films with perovskite structure. The as-grown Ba0.65Sr0.35TiO3 films showed good dielectric properties with dielectric constant and loss tangent tan δ = 0.026. Excellent dielectric tunability was also achieved in the (110)-oriented films. With applying an electric field of 230 kV/cm at 100 kHz, the dielectric tunability and the figure of merit can reach up to 63.4% and 16, respectively. These results indicate that the highly (110)-oriented Ba0.65Sr0.35TiO3 film is a promising candidate for the applications in microwave tunable devices.  相似文献   

17.
The Bi2S3 microcrystallite doped thin films and glass lumps have been successfully prepared by the sol-gel process from the hydrolysis of a complex solution of Si(OC2H5)4 Bi(NO3)3 · 5H2O and SC(NH2)2, and the size of the microcrystallites in glass heated for different times at 400°C was decided by the method of HRTEM. The optical transmission valley shifted towards longer wavelengths with longer heat-treatment time at 500°C in the Bi2S3 doped thin films, showing the experimental evidence of quantum size effects. The red-shift of emission peaks in luminenscence spectrum excited with longer wavelength is attributed to the broad distribution of particle size in Bi2S3 doped glass.  相似文献   

18.
Highly (111) oriented, phase-pure perovskite Pb(Zr0.3Ti0.7)O3 (or PZT 30/70) thin films were deposited on single-crystal, (0001) wurtzite GaN/sapphire substrates using the sol-gel process and rapid thermal annealing. The phase, crystallinity, and stoichiometry of annealed PZT films were evaluated by X-ray diffraction and Rutherford backscattering spectroscopy. The atomic force microscopy revealed a smooth PZT surface (rms roughness ∼1.5 nm) with striations and undulations possibly influenced by the nature of the underlying GaN surface. The cross-sectional field-emission scanning electron microscopic images indicated a sharper PZT/GaN interface compared to that of sol-gel derived PZT on (111) Pt/TiO2/SiO2/(100) Si substrates. The capacitance-voltage (C-V) characteristics for PZT in the Pt/PZT/GaN (metal-ferroelectric-semiconductor or MFS) configuration were evaluated as a function of annealing temperature and applied voltage. The observed C-V hysteresis stemmed from trapped charge at defect sites within PZT. Also, the lower capacitance density (C/A = 0.35 μF/cm2, where A is the area of an electrode) and remnant polarization (P r ∼ 4 μC/cm2) for PZT in the MFS configuration, compared to the values for PZT in the MFM configuration (Pt/PZT/Pt), were attributed to the high depolarization field within PZT.  相似文献   

19.
The photocatalytic activity of 1.0 wt% PdO supported on Al2O3-Nd2O3 binary oxides prepared by the sol-gel method was studied in the photodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D). The photocatalysts were characterized by N2 physisorption, XRD and UV-vis spectroscopy. PdO supported on γ-Al2O3 photo-degrades the 2,4-D, however the addition of Nd2O3 to γ-Al2O3 notably improves the photocatalytic activity. As the concentration of Nd2O3 in the binary oxide increases from 2 to 10 wt%, the photodegradation of 2,4-D is highly enhanced. The catalytic test for PdO supported on pure Nd2O3 showed scarce photocatalytic activity. Total organic carbon (TOC) analysis showed that the 2,4-D has been completely destroyed on the PdO/Al2O3-Nd2O3 photocatalysts after 6 h under irradiation.  相似文献   

20.
The precursors with a low manganese content ≤ 0.07% Mn were synthesized by spontaneous crystallization from Zn2+, Mn2+ and C2O4 2−-containing solutions. The initial ratio Zn2+:C2O4 2− = 1:1 and 1:2 influences the morphology and prevailing orientations of the crystallites in the oxalate samples. The presence of such small Mn content in the samples does not change the morphology or size of the crystals. The ZnO and Mn/ZnO oxides with manganese content from 0.51×10−2 to 15.1×10−2 Wt % are obtained after thermal decomposition of the oxalates. The oxides preserved the morphology of the precursors. The catalytic tests show that the pure ZnO has a poor activity for CO oxidation reaction. Its doping with Mn promotes the catalytic activity (up from twice to five times) in spite of the very low contents of the dopants. The observed increase of the activity depends on both dopant concentration and Zn2+:C2O4 2− ratio, probably due to the different mechanism of the manganese inclusion and different morphology of the oxides. The catalysts of the 1:2 series are more active in CO oxidation reaction.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号