首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
This study was suggested by previous work on the simulation of evolution equations with scale-dependent processes,e.g.,wave-propagation or heat-transfer,that are modeled by wave equations or heat equations.Here,we study both parabolic and hyperbolic equations.We focus on ADI (alternating direction implicit) methods and LOD (locally one-dimensional) methods,which are standard splitting methods of lower order,e.g.second-order.Our aim is to develop higher-order ADI methods,which are performed by Richardson extrapolation,Crank-Nicolson methods and higher-order LOD methods,based on locally higher-order methods.We discuss the new theoretical results of the stability and consistency of the ADI methods.The main idea is to apply a higher- order time discretization and combine it with the ADI methods.We also discuss the dis- cretization and splitting methods for first-order and second-order evolution equations. The stability analysis is given for the ADI method for first-order time derivatives and for the LOD (locally one-dimensional) methods for second-order time derivatives.The higher-order methods are unconditionally stable.Some numerical experiments verify our results.  相似文献   

2.
针对带跳随机波动率模型满足的偏积分微分方程,提出一种新的高阶交替方向隐式(ADI)有限差分格式,该模型是一个具有混合导数和非常数系数的对流扩散型初边值问题.我们将不同的高阶空间离散与时间步ADI分裂格式相结合,得到了一种空间四阶精度、时间二阶精度的有效方法,并采用Fourier方法分析了高阶ADI格式的稳定性.最后,通过对欧式看跌期权定价模型进行数值实验证实了数值方法的高阶收敛性.  相似文献   

3.
本文主要研究高维带弱奇异核的发展型方程的交替方向隐式(ADI)差分方法.向后欧拉(Euler)方法联立一阶卷积求积公式处理时间方向的离散,有限差分方法处理空间方向的离散,并进一步构造了ADI全离散差分格式.然后将二维问题延伸到三维问题,构造三维空间问题的ADI差分格式.基于离散能量法,详细证明了全离散格式的稳定性和误差分析.随后给出了2个数值算例,数值结果进一步验证了时间方向的收敛阶为一阶,空间方向的收敛阶为二阶,和理论分析结果一致.  相似文献   

4.
针对文献[Xu R et al.,IEEE Trans.Biomed.Eng.,2014]的多尺度图像分解模型,该文提出了Alternating Direction Implicit (ADI)格式下的多尺度图像分解算法,并证明了在该模型下ADI格式的收敛性和稳定性,进一步,通过对不同图像的数值实验,验证了该文提出的算法具有更好的纹理提取效果.  相似文献   

5.
双币种期权是一种重要的金融衍生产品,其定价模型是一个含有混合导数项的二维Black-Scholes方程,研究它的数值解法有着非常重要的理论意义和实际价值.本文给出求解双币种期权定价模型的基于Craig-Sneyd分裂法的一个新ADI差分方法(C-S ADI),该方法首先将二维B1ack-Scholes方程分裂为两个一维方程和一个含有混合导数的二维方程,然后分别对一维方程构造半隐式格式,对含混合导数的二维方程构造显式格式进行计算.C-S ADI差分方法具有以下优点:并行性,无条件稳定性,收敛性及空间二阶、时间一阶的计算精度.理论分析与数值试验表明,相比于经典的Crank-Nicolson差分格式和已有的基于Douglas Rachford分裂法的ADI差分格式(D-R ADI),本文格式计算精度更高,并且由于其具有天然的并行特性,本文格式比串行的Crank-Nicolson格式节省了近1/5的计算时间,证实了该方法对求解双币种期权定价模型是有效的.  相似文献   

6.
构造了一个解三维抛物型方程的高精度ADI格式,格式绝对稳定,截断误差为O(△t^2+△x^4);然后应用Richerdson外推法,外推一次得到了具有O(△t^3+△x^6)阶精度的近似解.  相似文献   

7.
A compact alternating direction implicit(ADI) method has been developed for solving multi-dimensional heat equations by introducing the differential operators and the truncation error is O(τ 2 + h 4 ). It is shown by the discrete Fourier analysis that this new ADI scheme is unconditionally stable and the truncation error O(τ 3 + h 6 ) is gained with once Richardson's extrapolation. Some numerical examples are presented to demonstrate the efficiency and accuracy of the new scheme.  相似文献   

8.
构造了一个解四维热传导方程的一个高精度ADI格式,格式绝对稳定,截断误差阶达到O(△t~2 △x~4).可用追赶法求解.  相似文献   

9.
许多工程问题可通过带有未知参数的抛物方程求解.因此,发展高精度数值方法求解这类反问题非常重要.本文提出一种交替方向隐格式(ADI)的三层线性化组合紧致差分(CCD)格式求解带控制参数的二维非定常反应扩散方程.该方法在时间上达到二阶精度,空间上达到六阶精度.在每个ADI迭代步,只需求解一个块三对角系统,可通过块Thomas算法快速求解.此外,我们严格证明在周期性边界条件下,CCD-ADI方法解的存在性和唯一性.最后,通过与已有空间四阶方法对比,用数值算例验证新方法的无条件稳定性、精度与效率.  相似文献   

10.
本文主要定量研究用沿熔体表面喷射惰性气体的方法来控制Marangoni对流,抑止振荡现象的机理与可行性.导出了支配悬浮区热毛细对流的基本方程与正确边界条件,给出了粘性与边界层情况的对应关系,并应用ADI方法对微重力下悬浮区热毛细对流进行了数值模拟,讨论了各种参数(如Ma,Rσ,Gr)对于流动的影响.  相似文献   

11.
In this article, we develop an exponential high order compact alternating direction implicit (EHOC ADI) method for solving three dimensional (3D) unsteady convection–diffusion equations. The method, which requires only a regular seven‐point 3D stencil similar to that in the standard second‐order methods, is second order accurate in time and fourth‐order accurate in space and unconditionally stable. The resulting EHOC ADI scheme in each alternating direction implicit (ADI) solution step corresponding to a strictly diagonally dominant matrix equation can be solved by the application of the one‐dimensional tridiagonal Thomas algorithm with a considerable saving in computing time. Numerical experiments for three test problems are carried out to demonstrate the performance of the present method and to compare it with the classical Douglas–Gunn ADI method and the Karaa's high‐order compact ADI method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

12.
We derive a high‐order compact alternating direction implicit (ADI) method for solving three‐dimentional unsteady convection‐diffusion problems. The method is fourth‐order in space and second‐order in time. It permits multiple uses of the one‐dimensional tridiagonal algorithm with a considerable saving in computing time and results in a very efficient solver. It is shown through a discrete Fourier analysis that the method is unconditionally stable in the diffusion case. Numerical experiments are conducted to test its high order and to compare it with the standard second‐order Douglas‐Gunn ADI method and the spatial fourth‐order compact scheme by Karaa. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

13.
Longitudinal dispersion of suspended particles with settling velocity in a turbulent shear flow over a rough-bed surface is investigated numerically when the settling particles are released from an elevated continuous line-source. A combined scheme of central and four-point upwind differences is used to solve the steady turbulent convection–diffusion equation and the alternating direction implicit (ADI) method is adopted for the unsteady equation. It is shown how the mixing of settling particles is influenced by the ‘log-wake law’ velocity and the corresponding eddy diffusivity when the initial distribution of concentration is regarded as a line-source. The concentration profiles for the steady-state conditions agree well with the existing experimental data and some other numerical results when the settling velocity is zero. The behaviours of iso-concentration lines in the vertical plane for different releasing heights are studied in terms of the relative importance of convection, eddy diffusion and settling velocity.  相似文献   

14.
In this paper, we extend the Sun and Zhang’s [24] work on high order finite difference method, which is based on the Richardson extrapolation technique and an operator interpolation scheme for the one and two dimensional steady convection diffusion equations to the three dimensional case. Firstly, we employ a fourth order compact difference scheme to get the fourth order accurate solution on the fine and the coarse grids. Then, we use the Richardson extrapolation technique by combining the two approximate solutions to get a sixth order accurate solution on coarse grid. Finally, we apply an operator interpolation scheme to achieve the sixth order accurate solution on the fine grid. During this process, we use alternating direction implicit (ADI) method to solve the resulting linear systems. Numerical experiments are conducted to verify the accuracy and effectiveness of the present method.  相似文献   

15.
A compact alternating direction implicit (ADI) method has been developed for solving two‐dimensional parabolic differential equations. In this study, the second‐order derivatives with respect to space are discretized using the high‐order compact finite differences. The Peaceman‐Rachford ADI method is then used for developing a new ADI scheme. It is shown by the discrete Fourier analysis that this new ADI scheme is unconditionally stable. The method can be generalized to the three‐dimensional case and an unconditionally stable compact Douglas ADI scheme is obtained. The method is illustrated by numerical examples. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 129–142, 2002; DOI 10.1002/num.1037  相似文献   

16.
Based on Li’s immersed interface method (IIM), an ADI-type finite difference scheme is proposed for solving two-dimensional nonlinear convection–diffusion interface problems on a fixed cartesian grid, which is unconditionally stable and converges with two-order accuracy in both time and space in maximum norm. Correction terms are added to the right-hand side of standard ADI scheme at irregular points. The nonlinear convection terms are treated by Adams–Bashforth method, without affecting the stability of difference schemes. A new method for computing the correction terms is developed, in which the Adams–Bashforth method is employed. Thus we can get an explicit approximation for the computation of corrections, when the jump condition is solution-dependent. Three numerical experiments are displayed and analyzed. The numerical results show good agreement with the exact solutions and confirm the convergence order.  相似文献   

17.
Finite difference method is an important methodology in the approximation of waves. In this paper, we will study two implicit finite difference schemes for the simulation of waves. They are the weighted alternating direction implicit (ADI) scheme and the locally one-dimensional (LOD) scheme. The approximation errors, stability conditions, and dispersion relations for both schemes are investigated. Our analysis shows that the LOD implicit scheme has less dispersion error than that of the ADI scheme. Moreover, the unconditional stability for both schemes with arbitrary spatial accuracy is established for the first time. In order to improve computational efficiency, numerical algorithms based on message passing interface (MPI) are implemented. Numerical examples of wave propagation in a three-layer model and a standard complex model are presented. Our analysis and comparisons show that both ADI and LOD schemes are able to efficiently and accurately simulate wave propagation in complex media.  相似文献   

18.
A compact ADI scheme of second‐order in time and fourth‐order in space is proposed for solving linear Schrödinger equations with periodic boundary conditions. By using the recently suggested discrete energy method, it is shown that the stable compact ADI method is unconditionally convergent in the maximum norm. Numerical experiments, including the comparisons with the second‐order ADI scheme and the time‐splitting Fourier pseudospectral method, are presented to support the theoretical results and show the effectiveness of our method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

19.
A backward Euler alternating direction implicit (ADI) difference scheme is formulated and analyzed for the three‐dimensional fractional evolution equation. In our method, the Riemann‐Liouville fractional integral term is treated by means of first order convolution quadrature suggested by Lubich. Meanwhile, an ADI technique is adopted to reduce the multidimensional problem to a series of one‐dimensional problems. A fully discrete difference scheme is constructed with space discretization by finite difference method. Two new inner products and corresponding norms are defined to analyze the scheme. The verification of stability and convergence is based on the nonnegative character of the real quadratic form associated with the convolution quadrature. Numerical experiments are reported to demonstrate the efficiency of our scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号