首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
U.S. Environmental Protection Agency (EPA) Method 535 has been developed in order to provide a method for the analysis of "Alachlor ESA and other acetanilide degradation products," which are listed on EPA's 1998 Drinking Water Contaminant Candidate List. Method 535 uses solid-phase extraction with a nonporous graphitized carbon sorbent to extract the ethane sulfonic acid (ESA) and oxanilic acid degradates of propachlor, flufenacet, dimethenamid, alachlor, acetochlor, and metolachlor from finished drinking water matrixes. Separation and quantitation of the target analytes are achieved with liquid chromatography/tandem mass spectrometry. Dimethachlor ESA and butachlor ESA were chosen during the method development as the surrogate and internal standard. Drinking water samples were dechlorinated with ammonium chloride without adversely affecting the analyte recoveries. Typical mean recoveries of 92-116% in deionized water and 89-116% in ground water were observed with relative standard deviations of <5%.  相似文献   

2.
An evaluation was made of the feasibility of using reversed-phase liquid chromatography/tandem mass spectrometry with an electrospray interface (LC/ESI-MS/MS) to measure traces of phenoxyacid herbicides and their metabolites in surface and drinking water samples. The procedure involved passing 0.5 L of river and drinking water samples through a 0.5 g graphitized carbon black (GCB) extraction cartridge. Recovery was higher than 85% irrespective of the aqueous matrix in which the analytes were dissolved. A conventional 4.6-mm i.d. reversed-phase LC C-18 column operating with a mobile phase flow rate of 1 mL/min was used to chromatograph the analytes. A flow of 200 microL/min of the column effluent was diverted to the ESI source. The limits of detection (signal-to-noise ratio = 3) of the method for the pesticides considered in drinking and surface water samples are less than 0.1 ng/L for phenoxyacid herbicides, and about 5-10 ng/L for their metabolites (2,4-dichlorophenol and 4-chloro-2-methylphenol).  相似文献   

3.
Proper collection and preservation techniques are necessary to ensure sample integrity and maintain the stability of analytes until analysis. Data from improperly collected and preserved samples could lead to faulty conclusions and misinterpretation of the occurrence and fate of the compounds being studied. Because contaminants of emerging concern, such as pharmaceuticals and personal care products (PPCPs) and steroids, generally occur in surface and drinking water at ng/L levels, these compounds in particular require such protocols to accurately assess their concentrations. In this study, sample bottle types, residual oxidant quenching agents, preservation agents, and hold times were assessed for 21 PPCPs and steroids in surface water and finished drinking water. Amber glass bottles were found to have the least effect on target analyte concentrations, while high-density polyethylene bottles had the most impact. Ascorbic acid, sodium thiosulfate, and sodium sulfite were determined to be acceptable quenching agents and preservation with sodium azide at 4 °C led to the stability of the most target compounds. A combination of amber glass bottles, ascorbic acid, and sodium azide preserved analyte concentrations for 28 days in the tested matrices when held at 4 °C. Samples without a preservation agent were determined to be stable for all but two of the analytes when stored in amber glass bottles at 4 °C for 72 h. Results suggest that if improper protocols are utilized, reported concentrations of target PPCPs and steroids may be inaccurate.  相似文献   

4.
For this study, we developed methods of determining ten perfluorinated chemicals in drinking water, milk, fish, beef, and pig liver using high-flow automated solid-phase extraction (SPE) and ultra-high performance liquid chromatography/tandem mass spectrometry. The analytes were separated on a core-shell Kinetex C18 column. The mobile phase was composed of methanol and 10-mM N-methylmorpholine. Milk was digested with 0.5 N potassium hydroxide in Milli-Q water, and was extracted with an Atlantic HLB disk to perform automated SPE at a flow rate ranged from 70 to 86 mL/min. Drinking water was directly extracted by the SPE. Solid food samples were digested in alkaline methanol and their supernatants were diluted and also processed by SPE. The disks were washed with 40% methanol/60% water and then eluted with 0.1% ammonium hydroxide in methanol. Suppression of signal intensity of most analytes by matrixes was lower than 50%; it was generally lower in fish and drinking water but higher in liver. Most quantitative biases and relative standard deviations were lower than 15%. The limits of detection for most analytes were sub-nanograms per liter for drinking water and sub-nanograms per gram for solid food samples. This method greatly shortened the time and labor needed for digestion, SPE, and liquid chromatography. This method has been applied to analyze 14 types of food samples. Perfluorooctanoic acid was found to be the highest among the analytes (median at 3.2-64 ng/g wet weight), followed by perfluorodecanoic acid (0.7-25 ng/g) and perfluorododecanoic acid (0.6-15 ng/g).  相似文献   

5.
The mechanism underlying the enrichment power by pressure-assisted electrokinetic injection (PAEKI) in capillary electrophoresis (CE) was investigated for on-line pre-concentration of arsenic [As(III) and As(V)], selenium [Se(IV) and Se(VI)] and bromate (BrO(3)(-)). Analyte diffusion behaviour from PAEKI sample plugs were evaluated by monitoring peak broadening as a function of stagnant time and position in the capillary. During PAEKI, anionic analytes accumulate at the sample-separation buffer boundary. We proposed that a counter-ion layer formed in PAEKI, where a cation layer was formed at the separation buffer side of boundary. The cation layer served as a soft boundary which impeded zone broadening via electrostatic attraction between layers. This effect likely played an important role in maintaining focused analyte bands by suppressing diffusion. Comparison of analyte behaviour in PAEKI injected sample plugs to behaviour in hydrodynamically injected ones proved the existence of a counter-ion layer. The dependence of analyte diffusion in PAEKI plugs on electrochemical properties (viscosity, conductivity, electrophoretic mobility) further supported the hypothesis. Additionally, it was noted that analytes with low electrophoretic mobility were more efficiently pre-concentrated by PAEKI and were less subject to forces of dispersion than analytes with greater electrophoretic mobility. PAEKI-CE coupled to electrospray tandem mass spectroscopy (ESI-MS/MS) was then optimized and validated for detection of arsenic, selenium and bromate in water samples. On-line enrichment of the target analytes was achieved with 1-3 ng mL(-1) detection limits, which was below the maximum contaminant levels in drinking water for all five anions studied. Noteworthy, the potential of the method for unbiased detection of molecular species in untreated water was demonstrated. No contamination was detected in the water samples tested; however, recovery was 90-118% for spiked samples. The method was demonstrated be comparable to current methods for detection of inorganic contaminants in drinking water and is a good alternative method to ion chromatography/liquid chromatography-MS.  相似文献   

6.
The European Union specificies that drinking water can contain pesticide residues at concentrations of up to 0.1 μg/L each and 0.5 μg/L in total, and that 1–3 μg/L of pesticides can be present in surface water, but the general idea is to keep discharges, emissions and losses of priority hazardous substances close to zero for synthetic substances. Therefore, in order to monitor pesticide levels in water, analytical methods with low quantification limits are required. The method proposed here is based on solid phase extraction (SPE) followed by gas chromatography with a nitrogen–phosphorous detector (GC-NPD). During method development, six organophosphate pesticides (azinphos-ethyl, chlorfenvinphos, chlorpyriphos, ethoprophos, fenamiphos and malathion) and two organonitrogen pesticides (alachlor and deltamethrin) were considered as target analytes. Elution conditions that could influence the efficiency of the SPE were studied. The optimized methodology exhibited good linearity, with determination coefficients of better than 0.996. The analytical recovery for the target analytes ranged from 70 to 100%, while the within-day precision was 4.0–11.5 %. The data also showed that the nature of the aqueous matrice (ultrapure, surface or drinking water) had no significant effect on the recovery. The quantification limits for the analytes were found to be 0.01–0.13 μg/L (except for deltamethrin, which was 1.0 μg/L). The present methodology is easy, rapid and gives better sensitivity than solvent drop microextraction for the determination of organonitrogen and organophosphate pesticides in drinking water at levels associated with the legislation.  相似文献   

7.
In the present work, a novel sample pre-treatment technique for the determination of trace concentrations of some insecticide compounds in aqueous samples has been developed and applied to the determination of the selected analytes in environmental water samples. The extraction procedure is based on coupling polypropylene hollow fiber liquid phase microextraction (HF-LPME) with gas chromatography by flame thermionic detection (GC-FTD). For the development of the method, seven organophosphorous insecticides (dichlorvos, mevinphos-cis, ethoprophos, chlorpyrifos methyl, phenthoate, methidathion and carbofenothion) and one carbamate (carbofuran) were considered as target analytes. Several factors that influence the efficiency of HF-LPME were investigated and optimized including agitation, organic solvent, sample volume, exposure time, salt additives and pH. The optimized methodology exhibited good linearity with correlation coefficient = 0.990. The analytical precision for the target analytes ranged from 4.3 to 11.1 for within-day variation and 4.6 to 12.0% for between-day variation. The detection limits for all analytes were found in the range from 0.001 to 0.072 microg/L, well below the limits established by the EC Drinking Water Directive (EEC 80/778). Relative recoveries obtained by the proposed method from drinking and river water samples ranged from 80 to 104% with coefficient of variations ranging from 4.5 to 10.7%. The present methodology is easy, rapid, sensitive and requires small sample volumes to screen environmental water samples for insecticide residues.  相似文献   

8.
A reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the determination of trace concentrations of benomyl, carbendazim, aldicarb, aldicarb sulphoxide and aldicarb sulphone in drinking water. A 10-ml sample of water is passed through a 3-cm precolumn, packed with 5-microns C8 sorbent, at a flow-rate of 5 ml/min. The HPLC system is then switched to an acetonitrile-water gradient elution program. The preconcentrated analytes are eluted from, and separated by, the 3-cm C8 precolumn and determined by UV absorption. The total analytical time is 25 min. The lowest detectable concentrations are in the range of 2.5 x 10(-9)-11.0 x 10(-9) g/ml for the five analytes investigated with 10 ml of sample.  相似文献   

9.
N-亚硝胺是潜在的人类致癌物,是近年来关注的一类饮用水消毒副产物,同时也是环境分析研究的热点.本文建立了超高效液相色谱(UPLC)串联质谱快速测定饮用水中9种N-亚硝胺的新方法,讨论了色谱柱和流动相对分离9种N-亚硝胺的影响,优化了多级反应质谱(MRM,MS/MS)条件.二甲基亚硝胺-d6为贮存和回收率内标,亚硝基二丙...  相似文献   

10.
Based on the information available on 293 pesticides (herbicides, insecticides, fungicides, biocides, growth regulators) 210 pesticide metabolites were selected for inclusion into a multimethod for the analysis of ground and surface water. With the final method 150 pesticide metabolites can be analysed from groundwater and surface water by direct injection-liquid chromatography–electrospray ionization-tandem mass spectrometry with multiple-reaction monitoring. For most of these metabolites this is the first method published. For all metabolites linear calibration in drinking water was possible, with a lower limit of calibration of 0.1 μg/L achieved for 142 analytes and of 0.01 μg/L for 113 of the analytes. Matrix effects in ground and surface water compared to those in the drinking water were moderate (±20%) for 87% of the analytes. For critical sample/analyte combinations standard addition has to be used for correct quantification. This method allows for an extensive study of the occurrence of previously unknown or undetectable pesticide metabolites in groundwaters and surface waters.  相似文献   

11.
One acetamide and 5 acetanilide herbicides are currently registered for use in the United States. Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of these acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. Alachlor ESA and other acetanilide degradation products are listed on the U.S. Environmental Protection Agency's (EPA) 1998 Drinking Water Contaminant Candidate List. Consequently, EPA is interested in obtaining national occurrence data for these contaminants in drinking water. EPA currently does not have a method for determining these acetanilide degradation products in drinking water; therefore, a research method is being developed using liquid chromatography/negative ion electrospray/mass spectrometry with solid-phase extraction (SPE). A novel chromatographic separation of the acetochlor/alachlor ESA and OA structural isomers was developed which uses an ammonium acetate-methanol gradient combined with heating the analytical column to 70 degrees C. Twelve acetanilide degradates were extracted by SPE from 100 mL water samples using carbon cartridges with mean recoveries >90% and relative standard deviations < or =16%.  相似文献   

12.
An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.  相似文献   

13.
A simple multidimensional system for direct injection of large volumes has been developed for the determination of three naphthalene-derivative pesticides [2-(1-naphthyl) acetamide (NAD), 1-naphthyl methylcarbamate (carbaryl) and 1-naphthol] in water using fluorescence detection. The capability of restricted-access medium (RAM), pre-columns for eliminating large interfering molecules, combined with an optimised, coupled-column separation procedure, large volume injection (LVI) and fluorescence detection, gave excellent sensitivity for target analytes. The maximum admissible concentration levels established by the European Union (EU) for individual pesticides and their related compounds in drinking water (0.1 μg L?1) were easily reached. Detection limits were lower than, or equal to, 0.003 μg L?1. Average recoveries ranged: 81–104% (n=3) with relative standard deviation (RSD) values: 2–7%. Application of the coupled-column liquid chromatography (LC-LC) method was by determining target analytes in ground water samples from five agricultural zones of Almería, (Spain) over three months.  相似文献   

14.
Pollution of drinking water supplies from industrial waste is a result of several industrial processes and disposal practices, and the establishment of analytical methods for monitoring organic compounds related to environmental and health problems is very important. In this work, a method using solid-phase extraction (SPE) and gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS) was developed and validated for the simultaneous determination of pesticide residues and related compounds in drinking and surface water as well as in industrial effluent. Optimization of the method was achieved by using a central composite design approach on parameters such as the sample pH and SPE eluent composition. A single SPE consisting of the loading on a polymeric sorbent of 100 mL of sample adjusted to pH 3 and elution with methanol/methylene chloride (10:90, v/v) permitted the obtaining of acceptable recoveries in most cases. The concentration factor associated with sensitivity of the chromatographic analysis permitted the achievement of the method limit of detection values between 0.01 and 0.25 μg L?1. Recovery assays presented mean recoveries between 70 and 120 % for most of the compounds with very good precision, despite the different chemical nature of the compounds analyzed. The selectivity of the method, evaluated through the relative intensity of quantification and qualification ions obtained by GC-QqQ-MS/MS, was considered adequate. The developed method was finally applied to the determination of target analytes in real samples. River water and treated industrial effluent samples presented residues of some compounds, but no detectable residues were found in the drinking water samples evaluated.  相似文献   

15.
简化柱切换技术在高浓度基体存在下测定痕量离子的研究   总被引:1,自引:0,他引:1  
黄源  牟世芬 《色谱》2000,18(2):95-99
 建立了适用于高浓度基体存在下测定痕量离子的简化柱切换技术。通过分析淋洗液浓度对待测离子色谱峰保留时间的影响 ,指出可使用高浓度淋洗液抑制色谱峰漂移 ,并通过实验案例提出了针对不同样品采取的不同策略。  相似文献   

16.
Summary A new method for the simultaneous identification and quantification of base/neutral and acidic pesticides at a low nanogram per liter concentration level in natural waters is presented. The method includes enrichment of the compounds by solid phase extraction on graphitized carbon black, followed by sequential elution of the base/neutral and acidic pesticides. Identification and quantification of the compounds is performed with HPLC-ESI-MS. This procedure involves passing 1 L of ground water and 2 L of drinking water samples through a 0.5 g graphitized carbon black (GCB) extraction cartridge. A conventional 4.6-mm-i.d. reversed phase LC C-18 operating with a 1 mL min−1 flow of the mobile phase was used to chromatograph the analytes. A flow of 100 μL min−1 of the column effluent was diverted to the ESI source. The ESI source was operated in positive ion mode for base/neutral pesticides and in negative-ion mode for acid pesticides. For the analyte considered, the response of the mass detector was linearly related to the amount of the analytes injected between 5 and 250 ng. In all cases, recoveries of the analytes were better than 90%. The limit of detection (signal-to-noise ratio=3) of the method for the pesticides considered in drinking water samples was estimated to be about 3–10 ng L−1.  相似文献   

17.
Direct injection and solid‐phase extraction methods for the determination of diquat and paraquat in surface and drinking water were developed using liquid chromatography with tandem mass spectrometry. The signal intensities of analytes based on six ion‐pairing reagents were compared with each other, and 12.5 mM nonafluoropentanoic acid was selected as the best suited amongst them. A clean‐up method was developed using Oasis hydrophilic–lipophilic balance; this was compared to the direct injection method, with respect to limits of detection, interference, precision, and accuracy. Limits of quantification of diquat and paraquat were 0.03 and 0.01 μg/L using the direct injection method, and 0.002 and 0.001 μg/L using the hydrophilic–lipophilic balance method. When the hydrophilic–lipophilic balance method was used to analyze target compounds in 114 surface water and 30 drinking water samples, paraquat and diquat were detected within a concentration range of 0.001–0.12 and 0.002–0.038 μg/L in surface water, respectively. When the direct injection method was used to analyze target compounds in the same samples, the detected concentrations of paraquat and diquat were within 25% in samples being >0.015 μg/L using the hydrophilic–lipophilic balance method. The liquid chromatography with tandem mass spectrometry method using direct injection can thus be used for routine monitoring of paraquat and diquat in surface and drinking water.  相似文献   

18.
A procedure based on solid-phase extraction (SPE) has been developed for the simultaneous preconcentration of three widely used herbicides and seven of their most common degradation products. The compounds studied were atrazine and its metabolites, desethylatrazine, desethyldesisopropylatrazine (DEDIA), 2-hydroxyatrazine, desethyl-2-hydroxyatrazine and desisopropyl-2-hydroxyatrazine (DIHA), terbutryne and its metabolite 2-hydroxyterbutylazine, and chlorotoluron and its metabolite 3-chloro-4-methylphenylurea. A HPLC system with diode array detection was used for the separation, identification and quantification of all these analytes. In the SPE preconcentration step, different types of sorbent were studied: C18 on silica and polymeric sorbents (Oasis and LiChrolut EN), the best results being obtained with the styrene–divinylbenzene cartridge and when the elution was performed with methanol and ethyl acetate. The detection limits obtained were between 0.1 μg l−1 for DIHA and DEDIA and 0.02 μg l−1 for the other analytes. The method used permitted the determination of these herbicides in drinking water at the concentration levels demanded by current legislation. The proposed method was used to evaluate the presence and evolution with time of these herbicides and their degradation products in samples of surface and ground waters from agricultural zones of the provinces of Salamanca and Zamora (basins of the Rivers Guareña and Almar), Spain.  相似文献   

19.
Analytical method for the determination of ultra-trace levels of nitro-PAHs in various biotic matrices has been developed. Soxhlet extraction and/or solvent extraction enhanced by sonication were used for isolation of target analytes; GPC followed by SPE were employed for purification of crude extracts. GC-MS/NCI technique was utilised for identification/quantitation of target analytes. Performance characteristics of implemented method were obtained through thorough in-house validation procedure. The main sources of uncertainties were critically evaluated, possible strategies of their elimination/minimisation were considered and consequently employed. Examination of real-life samples of various foodstuffs (complete human diet, mate tea, pumpkin seed oil, parsley, sausages) was performed in this study.  相似文献   

20.
In this work we developed a sensitive and specific multiresidue method, based on reversed-phase liquid chromatography-mass spectrometry, with an ionspray interface (LC-ISI-MS), for determining 52 of most representative compounds of herbicides in water samples. The procedure used involved passing 0.5 l of surface water, 2 l of ground water and 4 l of drinking water samples, respectively, through a 0.5 g graphitized carbon black (GCB) extraction cartridge. Base-neutral and acid herbicides were differential eluted from GCB cartridge and follow analyzed by HPLC-ISI-MS apparatus. A conventional 4.6-mm-ID reversed-phase LC C18 column, operating with a mobile phase flow-rate of 1 ml/min, was used to chromatograph the analytes. A flow of 100 microl/min of the column effluent was diverted to the ISI source. The study demonstrates the sensitivity of the technique, with detection limit under 10 ng/l in drinking water samples. Performance data for the method such as recovery and precision are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号