首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
Two tripartite schemes are put forward with shared entanglements and Local Operation and Classical Communication (LOCC) for sharing an operation on a remote target sate. The first scheme uses a Bell and a symmetric W states as quantum channels, while the second replaces the symmetric W state by an asymmetric one. Both schemes are treated and compared from the aspects of quantum resource consumption, operation complexity, classical resource consumption, success probability and efficiency. It is found that the latter scheme is better than the former one. Particularly, the sharing can be achieved only probabilistically with the first scheme deterministically with the second one.  相似文献   

2.
An all W-type state task is put forward: joint remote state preparation of a W-type state via W-type states. We propose two probabilistic yet faithful schemes for the task. The first scheme uses two arbitrary W-type states as the shared quantum resource and the second scheme exploits three such states. We show that, while the first scheme requires some additional quantum resource and technical operations from the receiver, the second scheme allows any completely unequipped party to play the role of receiver. In both schemes the classical communication cost is one bit per preparer.  相似文献   

3.
Two schemes for teleporting an unknown one-particle state are proposed when a general W state is utilized as quantum channel. In the first scheme, after the sender (Alice) makes a Bell-state measurement on her particles, the recipient (Bob) performs a Von Neumann measurement and introduces an auxiliary particle, and carries out a unitary transformation on his particle and the auxiliary particle, and performs a Von Neumann measurement on the auxiliary particle to confirm whether the teleportation succeeds or not. In the second scheme, the recipient (Bob) does not need to perform the first Von Neumann measurement or introduce the auxiliary particle, which is necessary in the first scheme. It is shown that the maxima/probabilities of successful teleportation of the two schemes are identical if the recipient (Bob) performs an appropriate unitary transformation and adopts a proper particle on which he recovers the quantum information of state to be teleported.  相似文献   

4.
A four-party scheme is put forward for a sender to partition arbitrary single-qubit information among three receivers by utilizing a class of asymmetric four-qubit W state as quantum channels. In the scheme the sender's quantum information can be recovered by the three receivers if and only if they collaborate together. Specifically, they collaborate to perform first twodifferent 2-qubit collective unitary operations and then a single-qubit unitary operation. The scheme is symmetric and (3,3)-threshold with regard to the reconstruction, for any receiver can be assigned to conclusively recover the quantum information with the other two's assistances.  相似文献   

5.
Probabilistic Teleportation of a Four-Particle Entangled W State   总被引:2,自引:0,他引:2  
In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme, four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.  相似文献   

6.
Two schemes of teleporting an N-particle arbitrary and unknown state are proposed when N groups of three- particle general W states are utilized as quantum channels. In the first scheme, the quantum channels are shared by the sender and the recipient. After the sender's Bell-state measurements on his (her) particles, the recipient carries out unitary transformations on his (her) particles. And then, the recipient performs computational basis measurements to realize the teleportation. The recipient can recover the state on either of particle sequences with the equal maximal probability of successful teleportation if he (she) performs appropriate unitary transformations. In the second scheme, the quantum channels are shared by the sender, the recipient and the third ones. After the sender's Be11-state measurements and the third ones' computational basis measurements if they agree to cooperate, the recipient will introduce auxiliary particles and carry out appropriate unitary transformations. Finally, the recipient performs computational basis measurements to fulfill the teleportation. The second scheme can be realized if and only if the third ones agree to cooperate with the recipient.  相似文献   

7.
A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W states. An unknown three-particle GHZ state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and the Hadamard operation while either one of two receivers introduces an ancillary particle which is one of the final three particle constituting the teleported state, then performs the controlled-not operation with the ancillary particle as the target bit and introduces an appropriate unitary transformation with the help of the other receiver's simple measurements. All kinds of unitary transformations are given in detail. The present scheme may be directly generalized to teleport an unknown multiparticle GHZ state via two three-particle entangled W states used as the quantum channel.  相似文献   

8.
We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful probability and fidelity of the four schemes reach 1. In the first two schemes, the receiver can only apply one of the unitary transformations to reconstruct the original state, making it easier for these two schemes to be directly realized. In the third and fourth schemes, the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes, which makes real experiments more suitable. It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification. Finally, we present a new scheme for three-party sharing an arbitrary unknown multi-particle state. In this scheme, the sender first shares three three-particle GHZ states with two agents. After setting up the secure quantum channel, an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements, and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements. The successful probability and fidelity of this scheme also reach 1. It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents.  相似文献   

9.
We investigate the controlled implementation of a non-local CNOT operation using a three-qubit entangled state. Firstly, we show how the non-local CNOT operation can be implemented with unit fidelity and unit probability by using a maximally entangled GHZ state as controlled quantum channel. Then, we put forward two schemes for conclusively implementing the non-local operation with unit fidelity by employing a partially entangled pure GHZ state as quantum channel. The feature of these schemes is that a third side is included, who may participate the process of quantum non-local implementation as a supervisor. Furthermore, when the quantum channel is partially entangled, the third one can rectify the state distorted by imperfect quantum channel. In addition to the GHZ class state, the W class state can also be used to implement the same non-local operation probabilistically. The probability of successful implementation using the W class state is always less than that using the GHZ class state.  相似文献   

10.
We present an efficient scheme for sharing an arbitrary two-qubit quantum state with n agents. In this scheme, the sender Alice first prepares an n + 2-particle GHZ state and introduces a Controlled-Not (CNOT) gate operation. Then, she utilizes the n + 2-particle entangled state as the quantum resource. After setting up the quantum channel, she performs one Bell-state measurement and another single-particle measurement, rather than two Bell-state measurements. In addition, except that the designated recover of the quantum secret just keeps two particles, almost all agents only hold one particle in their hands respectively, and thus they only need to perform a single-particle measurement on the respective particle with the basis X. Compared with other schemes based on entanglement swapping, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.  相似文献   

11.
We put forward a generalized tripartite scheme for splitting an arbitrary 2-qubit pure state with three 2-qubit non-maximally en-tangled states as quantum channels.The scheme for the first time incorporates the Kraus measurement into quantum information splitting scheme.In contrast to the similar scheme using the same quantum channels and the ancilla-entangled measurement,our scheme is superior in terms of operation and complexity,success probability,resource consumption and effciency.  相似文献   

12.
薛正远  易佑民  曹卓良 《中国物理》2006,15(7):1421-1424
We investigate schemes for quantum secret sharing and quantum dense coding via tripartite entangled states. We present a scheme for sharing classical information via entanglement swapping using two tripartite entangled GHZ states. In order to throw light upon the security affairs of the quantum dense coding protocol, we also suggest a secure quantum dense coding scheme via W state by analogy with the theory of sharing information among involved users.  相似文献   

13.
We present two physical schemes for concentrating three-atom W state based on the same interaction model which involves two three-level atoms, a cavity field and a classical field. Both schemes introduce only one auxiliary atom. The first scheme involves only one measurement. There is one more measurement on the auxiliary atom in the second scheme, but the interaction time is simple in form and there is no single-qubit operation on the auxiliary atom. Moreover, both schemes are insensitive to cavity decay and within the current cavity quantum electrodynamics (QED) technique.  相似文献   

14.
查新未  张淳民 《物理学报》2008,57(3):1339-1342
杨洪钦等提出一个用两个三粒子W态作为量子信道将N粒子GHZ态从发送者传送给两个接收者中任意一个的量子隐形传送方案. 给出其理论分析,并提出了一个仅用一个三粒子W态作为量子信道将N粒子GHZ态传送给两个接收者之一的量子隐形传送的方案. 关键词: 隐形传态 GHZ态 W态量子信道  相似文献   

15.
In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, they can deterministically recover the quantum information by performing first a 4-qubit collective unitary operation and then two single-qubit unitary operations. In addition, since the asymmetric W states are employed as the quantum channel, the scheme is robust against decoherence.  相似文献   

16.
两个简单的量子线路被提出分别用来制备三量子比特Greenberger-Horne-Zeilinger(GHZ)态和W态。众所周知,任意的多量子比特门都可以由受控非门和单量子比特门复合而成。同样,我们发现三量子比特GHZ态和W态也可以由受控非门和单量子比特门来制备。因此,从量子计算的角度来看我们的方案十分重要。由于在整个过程只用到了单量子比特操作和双量子比特操作,所以我们的方案在实验中很容易实现。  相似文献   

17.
We propose a tripartite scheme for bisplitting an arbitrary single-qubit quantum information (QI) by using a class of asymmetric three-qubit W state as quantum channels. In the scheme, the sender Alice first performs a Bell-state measurement on her two qubits and then publishes her measurement result via a public classical channel. Based on Alice’s message, if the two receivers Bob and Charlie collaborate together, they can retrieve the QI, i.e., they can deterministically recover the QI in one receiver’s site by first performing a two-qubit unitary operation and then executing a single-qubit unitary operation. Afterwards, we sketch the extension of the single-qubit QI splitting to an arbitrary N-qubit QI splitting.  相似文献   

18.
邓富国  李熙涵  李涛 《物理学报》2018,67(13):130301-130301
量子通信以量子态为信息载体在远距离的通信各方之间传递信息,因此量子态的传输和远距离共享是量子通信的首要步骤.信道噪声不仅会影响通信效率还可能被窃听者利用从而威胁通信安全,对抗信道噪声是实现安全高效量子通信亟需解决的问题.本文介绍基于光量子态的两类对抗信道噪声的实用方法——量子态的避错传输和容错的量子通信,包括对抗噪声的基本原理和两种方法的代表性方案,并从资源消耗和可操作性的角度分析了方案的实用价值.  相似文献   

19.
Using a system of cavity quantum electrodynamics(QED) we present two schemes for multipartite entanglement generation. In the first scheme, a three-level atom is interacting with three cavities successively. In the second one, two three-level atoms are interacted with a coherent optical cavity. These protocols allow us to generate the six classes of tripartite entanglement(GHZ, W, A-B-C, AB-C, C-AB, and B-AC class states) by controling the interaction time between atoms and cavities. Moreover, they allow us to generate entanglement between the cavity fields degrees of freedom(from the first scheme), and a mixed entanglement between the cavity field degrees of freedom and the atomic degrees of freedom.  相似文献   

20.
Quantum Key Distribution Using Four-Qubit W State   总被引:3,自引:0,他引:3  
A new theoretical quantum key distribution scheme based on entanglement swapping is proposed, where four-qubit symmetric W state functions as quantum channel. It is shown that two legitimate users can secretly share a series of key bits by using Bell-state measurements and classical communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号