首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the greybody factor and Hawking radiation for a scalar field coupling to Einstein's tensor in the background of Reissner–Nordström black hole in the low-energy approximation. We find that the presence of the coupling terms modifies the standard results in the greybody factor and Hawking radiation. Our results show that both the absorption probability and Hawking radiation increase with the coupling constant. Moreover, we also find that for the stronger coupling, the charge of black hole enhances the absorption probability and Hawking radiation of the scalar field, which is different from those of ones without coupling to Einstein's tensor in the black hole spacetime.  相似文献   

2.

The purpose of this paper is to discuss the Hawking radiation of vector particles from a quantum correction black hole by the mean of quantum tunneling. In order to achieve this purpose, based on the Proca field equation and WKB approximation, the quantum tunneling method is used to calculate the tunneling rate and Hawking temperature of the black hole. According to the analysis of the consequences, we find that the tunneling rate and Hawking temperature are related to the quantum parameter besides the horizon radius and mass of the black hole. Furthermore, when the results are compared with those of scalar particles and fermions of the black hole, no difference is found. Therefore, the tunneling rate and Hawing temperature of the black hole do not change with the type of radiation particles.

  相似文献   

3.
Based on the generalized uncertainty principle (GUP), we investigate the correction of quantum gravity to Hawking radiation of black hole by utilizing the tunnelling method. The result tells us that the quantum gravity correction retards the evaporation of black hole. Using the corrected covariant Dirac equation in curved spacetime, we study the tunnelling process of fermions in Schwarzschild spacetime and obtain the corrected Hawking temperature. It turns out that the correction depends not only on the mass of black hole but also on the mass of emitted fermions. In our calculation, the quantum gravity correction slows down the increase of Hawking temperature during the radiation explicitly. This correction leads to the remnants of black hole and avoids the evaporation singularity.  相似文献   

4.
We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner–Nordström black hole, the Kerr black hole, and the Kerr–Newman black hole. The special case of tunneling through a quantum horizon is also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, is consistent with unitarity as required by quantum mechanics.  相似文献   

5.
We investigate the Hawking radiation and greybody factor for a scalar field on the background of the black holes in the theory of the non-minimal R β F 2-coupled electromagnetic fields to gravity. For different asymptotic structures caused by the real power number β, we find that the influences of the real power number on the Hawking radiation and greybody factor are different. We also show that the different coupling constant also affects the Hawking radiation and greybody factor.  相似文献   

6.
The Parikh–Wilczek tunnelling framework, which treats Hawking radiation as a tunnelling process, is investigated once more in this work. The first order correction, the log-corrected entropy-area relation, emerges naturally in the tunnelling picture if we consider the emission of a spherical shell. The second order correction to the emission rate for the Schwarzschild black hole is also calculated. At this level, the entropy of the black hole will contain three parts: the usual Bekenstein–Hawking entropy, a logarithmic term and an inverse area term. We find that the coefficient of the logarithmic term is −1. Thus, apart from a coefficient, our correction to the black hole entropy is consistent with that calculated in loop quantum gravity.  相似文献   

7.
A model black hole, holding a ‘quantum core’ characterized by the Planck order matter density, is revisited here. Based on the quantum improved Newton’s potential drawn out of the loop quantum cosmology we propose a Schwarzschild class, quantum improved black hole line-element that upholds the existence of Planck-dense quantum matter core. Causality is kept preserved in this proposal. Quite in a natural way the quantum core emerges closely homogeneous in its interior matter distribution. The radius of the quantum core turns out to be necessarily proportional to one-third power of the black hole mass. Hawking process of black hole evaporation leads to a shrinking quantum core, and as the mass of black hole approaches near about the Planck mass, the rate of evaporation diminishes rapidly and eventually leaves a cold remnant having a Planck order mass. Proposed model supports the standard quantum geometrical logarithmic correction to black hole entropy-area law.  相似文献   

8.
We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions.  相似文献   

9.
We study Hawking radiation in a new class of black hole solutions in Einstein–Gauss–Bonnet theory. The black hole has been argued to have vanishing mass and entropy, but finite Hawking temperature. To check if it really emits radiation, we analyze Hawking radiation using the original method of quantization of a scalar field in the black hole background and with the quantum tunneling method, and confirm that it emits radiation at the Hawking temperature. A general formula is derived for the Hawking temperature and backreaction in the tunneling approach. Physical implications of these results are discussed.  相似文献   

10.
The Hawking radiation from charged Kerr black hole via the method beyond semi-classical approximation is studied. In our work, we apply the WKB approximation method and the quantum tunneling method, then calculate the tunneling rate and further correct Hawking entropy to charged Kerr black hole. It is shown that the result is still in agreement with the unitary theory, the entropy of the black hole contains three parts: the usual Bekenstein-Hawking entropy, the logarithmic term and the inverse area term. Apart from coefficients, our correction to the charged Kerr black hole entropy is consistent with results of loop quantum gravity.  相似文献   

11.
We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstr?m-like solution of this model, which leads to an exact (t ? r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.  相似文献   

12.
We elaborate the signature of the extra dimensions and brane tension in the process of phantom and massive scalar emission in the spacetime of (4 + n)-dimensional tense brane black hole. Absorption cross section, luminosity of Hawking radiation and cross section in the low-energy approximation were found. We envisage that parameter connected with the existence of a brane imprints its role in the Hawking radiation of the considered fields.  相似文献   

13.
We studied the correction of the quantum tunneling radiation of fermions with spin 1/2 in Kerr anti-de-Sitter black hole. First, the dynamic equation of spin 1/2 fermions was corrected using Lorentz’s violation theory. Second, the new expressions of the fermions quantum tunneling rate,the Hawking temperature of the black hole and the entropy of the black hole were obtained according to the corrected fermions dynamic equation. Our results show that Hawking temperature increases with the enhancement of both the coupling strength and the radial component of ether-like field, but is independent of non-radial components of ether-like field.At last, some comments are made on the results of our work.  相似文献   

14.
In this paper, we extend Parikh's recent work to two kinds of the black holes whose ADM mass is no longer identical to its mass parameter, each with a topological defect, one being a global monopole black hole and another a cosmic string black hole. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability. From the tunnelling probability we also find a leading correction to the semiclassical emission rate. The results are consistent with an underlying unitary theory.  相似文献   

15.

We study the effects of Hawking radiation and bath temperature on quantum steering and entanglement for a two-mode Gaussian state exposed in the background of a black hole and immersed in the two independent thermal baths. We find that both the effects can destroy the quantum steering and entanglement. Quantum steering always exists sudden death for any Hawking temperature and any bath temperature, but entanglement does not in zero-temperature thermal bath. Both the Hawking radiation and the asymmetry of thermal baths can induce the asymmetry of quantum steering, but the latter effect is much weaker than the former. An unintuitive result is that the observer who stays in the Hawking radiation or in the thermal bath with higher temperature has more stronger steerability than the other one. We also find that Hawking radiation and thermal noise can change the asymptotic behavior of steering and entanglement versus the squeezing parameter.

  相似文献   

16.
《Physics Reports》2002,369(6):549-686
In this report we review the microscopic formulation of the five-dimensional black hole of type IIB string theory in terms of the D1–D5 brane system. The emphasis here is more on the brane dynamics than on supergravity solutions. We show how the low energy brane dynamics, combined with crucial inputs from AdS/CFT correspondence, leads to a derivation of black hole thermodynamics and the rate of Hawking radiation. Our approach requires a detailed exposition of the gauge theory and conformal field theory of the D1–D5 system. We also discuss some applications of the AdS/CFT correspondence in the context of black hole formation in three dimensions by thermal transition and by collision of point particles.  相似文献   

17.
Taking into account quantum gravity effects, we investigate the tunnelling radiation of charged fermions in the Kerr-Newman black hole. The result shows that the corrected Hawking temperature is determined not only by the parameters of the black hole, but also by the energy, angular momentum and mass of the emitted fermion. Meanwhile, an interesting found is that the temperature is affected by the angle ??. The quantum gravity correction slows down the evaporation.  相似文献   

18.
In this study, the quantum gravity effect on the tunnelling radiation of charged massive spin-0 scalar particle from \(2+1\) dimensional charged rotating Banados–Teitelboim–Zanelli (BTZ) black hole is looked into by using the Hamilton–Jacobi approach. For this, we calculate the modified Hawking temperature of the black hole by using the modified Klein–Gordon equation based on the generalized uncertainty principle, and we noticed that the modified Hawking temperature of the black hole depends not only on the black hole properties, but also on the angular momentum, energy, charge and mass of the tunnelling scalar particle. Using the modified Hawking temperature, we discussed the stability of the black hole in the context of the modified heat capacity, and observed that it might undergo both first and 1 phase transitions in the presence of the quantum gravity effect, but just a first-type transition in the absence of the quantum gravity effect. Furthermore, we investigated the modified Hawking temperature of the black hole by using the tunnelling processes of the charged massive Dirac and vector boson particles. We observed that scalar, Dirac and vector particles are tunnelled from the black hole completely differently from each other in the presence of the quantum gravity effect.  相似文献   

19.
Understanding the end state of black hole evaporation, the microscopic origin of black hole entropy, the information loss paradox, and the nature of the singularity arising in gravitational collapse - these are outstanding challenges for any candidate quantum theory of gravity. Recently, a midisuperspace model of quantum gravitational collapse has been solved using a lattice regularization scheme. It is shown that the mass of an eternal black hole follows the Bekenstein spectrum, and a related argument provides a fairly accurate estimate of the entropy. The solution also describes a quantized mass-energy distribution around a central black hole, which in the WKB approximation, is precisely Hawking radiation. The leading quantum gravitational correction makes the spectrum non-thermal, thus providing a plausible resolution of the information loss problem.  相似文献   

20.
By using the quantum tunneling approach over semiclassical approximations, we study the quantum corrections to the Hawking temperature, entropy and Bekenstein-Hawking entropy-area relation for a black hole lying on a brane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号