首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A one-dimensional dynamic model of polydisperse granular mixture with a power-law size distribution is presented, in which the particles are subject to inelastic mutual collisions and driven by Gaussian white noise. The particle size distribution of the mixture has the fractal characteristic, and a fractal dimension D as a measurement of the inhomogeneity of the particle size distribution is introduced. We define the global granular temperature and the kinetic pressure of the mixture, and obtain their expressions. By molecular dynamics simulations, we have mainly investigated how the inhomogeneity of the particle size distribution and the inelasticity of collisions influence the steady-state dynamic properties of the system, focusing on the global granular temperature, kinetic pressure, velocity distribution and distribution of interparticle spacing. Some novel results are found that, with the increase of the fractal dimension D, the global granular temperature and the kinetic pressure decrease, the velocity distribution deviates more obviously from the Gaussian one and the particles cluster more pronouncedly at the same value of the restitution coefficient e (0<e<1). On the other hand, as the restitution coefficient e decreases, the dynamic behavior has the similar evolution as above at the fixed fractal dimension D. The dynamic behavior changing with e and D is, respectively, presented.  相似文献   

2.
We propose a two-dimensional model of polydisperse granular mixtures with a power-law size distribution in the presence of stochastic driving. A fractal dimension D is introduced as a measurement of the inhomogeneity of the size distribution of particles. We define the global and partial granular temperatures of the multi-component mixture. By direct simulation Monte Carlo, we investigate how the inhomogeneity of the size distribution influences the dynamic properties of the mixture, focusing on the granular temperature, dissipated energy, velocity distribution, spatial clusterization, and collision time. We get the following results: a single granular temperature does not characterize a multi-component mixture and each species attains its own "granular temperature"; The velocity deviation from Gaussian distribution becomes more and more pronounced and the partial density of the assembly is more inhomogeneous with the increasing value of the fractal dimension D; The global granular temperature decreases and average dissipated energy per particle increases as the value olD augments.  相似文献   

3.
We propose a two-dimensional model of polydisperse granular mixtures with a power-law size distribution in the presence of stochastic driving. A fractal dimension D is introduced as a measurement of the inhomogeneity of the size distribution of particles. We define the global and partial granular temperatures of the multi-component mixture. By direct simulation Monte Carlo, we investigate how the inhomogeneity of the size distribution influences the dynamic properties of the mixture, focusing on the granular temperature, dissipated energy, velocity distribution, spatial clusterization, and collision time. We get the following results: a single granular temperature does not characterize a multi-component mixture and each species attains its own "granular temperature"; The velocity deviation from Gaussian distribution becomes more and more pronounced and the partial density of the assembly is more inhomogeneous with the increasing value of the fractal dimension D; The global granular temperature decreases and average dissipated energy per particle increases as the value of D augments.  相似文献   

4.
We represent a two-dimensional model of polydisperse granular mixtures with a power-law size distribution. The model consists of smooth hard disks in a rectangular box with inelastic collisions, driven by a homogeneous heat bath at zero gravity. The width of particle size distribution is characterized by the only
parameter, namely, the fractal dimension D. The energy dissipation of the mixture is increased as D increases or as e decreases. Furthermore, it is found that the steady-state properties of the mixture such as the collision rate, granular temperature, kinetic pressure and velocity distribution depend sensitively on size distribution parameter D.  相似文献   

5.
We study the global pressure of a one-dimensional polydisperse granular gases system for the first time,in which the size distribution of particles has the fractal characteristic and the inhomogeneity is described by a fractal dimension D. The particles are driven by Gaussian white noise and subject to inelastic mutual collisions. We define the global pressure P of the system as the impulse transferred across a surface in a unit of time, which has two contributions,one from the translational motion of particles and the other from the collisions. Explicit expression for the global pressure in the steady state is derived. By molecular dynamics simulations, we investigate how the inelasticity of collisions and the inhomogeneity of the particles influence the global pressure. The simulation results indicate that the restitution coefficient e and the fractal dimension D have significant effect on the pressure.  相似文献   

6.
We study the global pressure of a one-dimensional polydisperse granular gases system for the first time, in which the size distribution of particles has the fractal characteristic and the inhomogeneity is described by a fractal dimension D. The particles are driven by Gaussian white noise and subject to inelastic mutual collisions. We define the global pressure P of the system as the impulse transferred across a surface in a unit of time, which has two contributions, one from the translational motion of particles and the other from the collisions. Explicit expression for the global pressure in the steady state is derived. By molecular dynamics simulations, we investigate how the inelasticity of collisions and the inhomogeneity of the particles influence the global pressure. The simulation results indicate that the restitution coefficient e and the fractal dimension D have significant effect on the pressure.  相似文献   

7.
Using simple scaling arguments and two-dimensional numerical simulations of a granular gas excited by vibrating one of the container boundaries, we study a double limit of small 1-r and large L, where r is the restitution coefficient and L the size of the container. We show that if the particle density n0 and (1-r2)(n0 Ld) where d is the particle diameter, are kept constant and small enough, the granular temperature, i.e. the mean value of the kinetic energy per particle, 〈E 〉/N, tends to a constant whereas the mean dissipated power per particle, 〈D 〉/N, decreases like when N increases, provided that (1-r2)(n0 Ld)2 < 1. The relative fluctuations of E, D and the power injected by the moving boundary, I, have simple properties in that regime. In addition, the granular temperature can be determined from the fluctuations of the power I(t) injected by the moving boundary.  相似文献   

8.
We study the dynamics of a particle in a horizontally and periodically shaken box as a function of the box parameters and the coefficient of restitution. For certain parameter values, the particle becomes regularly chattered at one of the walls, thereby loosing all its kinetic energy relative to that wall. The number of container oscillations between two chattering events depends in a fractal manner on the parameters of the system. In contrast to a vertically vibrated particle, for which chattering is claimed to be the generic fate, the horizontally shaken particle can become trapped on a periodic orbit and follow the period-doubling route to chaos when the coefficient of restitution is changed. We also discuss the case of a completely elastic particle, and the influence of friction between the particle and the bottom of the container. Received: 19 September 1997 / Received in final form: 9 December 1997 / Accepted: 17 December 1997  相似文献   

9.
A fractal model is introduced into the slow blood motion. When blood flows slowly in a narrow tube, red cell aggregation results in the formation of an approximately cylindrical core of red cells. By introducing the fractal model and using the power law relation between area fraction φ and distance from tube axis ρ, rigorous velocity profiles of the fluid ia and outside the aggregated core and of the core itself are obtained analytically for different fractal dimensions. It shows a blunted velocity distribution for a relatively large fractal dimension (D~2), which can be observed in normal blood; a pathological velocity profile for moderate dimension (D = 1), which is similar to the Segre-Silberberg effect; and a parabolic profile for negligible red cell concentration (D = 0), which likes in the Poiseuille flow.  相似文献   

10.
A two dimensional (2‐D) stream of granular flow with zero initial granular temperature passing over a cylindrical obstacle is simulated by means of both molecular dynamics (MD) simulation and finite volume method (FVM). In experiments, a bow‐shaped shock wave with higher area fraction forms in front of the obstacle that was reproduced in our simulations. Due to the different circumstances to which particles are subjected, the granular flow is divided in two zones. One is undisturbed where quantities, such as space fraction (volume fraction for 3‐D and area fraction for 2‐D geometries), velocity and granular temperature are uniformly distributed and the other is called the shock wave zone. In this region, the values of the space fraction increases and the velocity of particles changes. From the MD simulation, it is found that the area fraction of the shock wave depends on surface roughness, coefficient of restitution (COR) of particles, the obstacle diameter as well as velocity of the granular stream, and a triangular region forms with almost zero velocity, and granular temperature forms in front of the cylindrical obstacle. The bigger is the size of the obstacle, the more stable this region is. In FVM simulations solid phase velocity and area fraction distributions similar to the MD simulation results are obtained for proper parameters.  相似文献   

11.
According to the fractal characteristics appearing in non-uniform granular system, we found the fractalmodel to study the effective thermal conductivity in the mixed system. Considering the quasi-equilibrium, we bringforward the fractal velocity probability distribution function. The equipartition of energy is employed to the non-uniform granular system, and the granular temperature is derived. We investigate the thermal conductivity in granularflow due to the movement of the particles, namely the heat transfer induced by the streaming mode only. The thermalconductivity in the mixed system changes with the fractal parameters such as the solid fraction v, structural characterparameter η, and fractal dimension D of size distribution. These parameters depict the characteristics of the thermalconductivity in the actual complex granular system. Comparing our conclusion with the correlative experimental dataand the theoretical conclusion of binary mixture of granular materials, the results can qualitatively confirm the generalityof our prediction on the granular system.  相似文献   

12.
According to the fractal characteristics appearing in non-uniform granular system, we found the fractal model to study the effective thermal conductivity in the mixed system. Considering the quasi-equilibrium, we bring forward the fractal velocity probability distribution function. The equipartition of energy is employed to the non-uniform granular system, and the granular temperature is derived. We investigate the thermal conductivity in granular flow due to the movement of the particles, namely the heat transfer induced by the streaming mode only. The thermal conductivity in the mixed system changes with the fractal parameters such as the solid fraction v, structural character parameter η, and fractal dimension D of size distribution. These parameters depict the characteristics of the thermal conductivity in the actual complex granular system. Comparing our conclusion with the correlative experimental data and the theoretical conclusion of binary mixture of granular materials, the results can qualitatively confirm the generality of our prediction on the granular system.  相似文献   

13.
We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Carlo method. When the typical relaxation time T of the Brownian process is greater than the mean collision time To, the energy evolution of the system exponentially decays, with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state in which the velocity distribution strongly deviates from the Gaussian one. Three other aspects have also been studied for the steady state: the visualized change of the particle density, the entropy of the system and the correlations in the velocity of particles. And the results of simulations indicate that the system has strong spatial clustering; Furthermore, the influence of the inelasticity and inhomogeneity on dynamic behaviors have also been extensively investigated, especially the dependence of the entropy and the correlations in the velocity of particles on the restitute coefficient e and the fractal dimension D.  相似文献   

14.
流化床内颗粒自旋转将影响颗粒相的流动特性.本文运用基于颗粒动理学理论的欧拉-欧拉气固多相流模型,考虑颗粒自旋转流动对颗粒碰撞能量交换和耗散的影响,数值模拟流化床内气体颗粒两相流动特性.计算结果表明颗粒的自旋转使得床内更容易形成气泡,颗粒浓度分布变化增大.颗粒自旋转运动将导致床内非均匀结构更明显.  相似文献   

15.
When suitably rescaled, the distribution of the angular gaps between branches of off-lattice radial diffusion-limited aggregation is shown to approach a size-independent limit. The power-law expected from an asymptotic fractal dimension D = 1.71 arises only for very small angular gaps, which occur only for clusters significantly larger than M = 10(6) particles. Intermediate size gaps exhibit an effective dimension around 1.67, even for M--> infinity. They dominate the distribution for clusters with M<10(6). The largest gap approaches a finite limit extremely slowly, with a correction of order M(-0.17).  相似文献   

16.
We have developed a kinetic theory of hard needles undergoing binary collisions with loss of energy due to normal and tangential restitution. In addition, we have simulated many particle systems of granular hard needles. The theory, based on the assumption of a homogeneous cooling state, predicts that granular cooling of the needles proceeds in two stages: An exponential decay of the initial configuration to a state where translational and rotational energies take on a time independent ratio (different from unity), followed by an algebraic decay of the total kinetic energy of approximately t(-2). The simulations support the theory very well for low and moderate densities. For higher densities, we have observed the onset of the formation of clusters and shear bands.  相似文献   

17.
The sheared granular flow of rough inelastic granular disks is analyzed in the high Knudsen number limit, where the frequency of particle-wall collisions is large compared with particle-particle collisions, using a kinetic theory approach. An asymptotic expansion is used in the small parameter epsilon =(nsigmaL), which is the ratio of the frequencies of particle-particle and particle-wall collisions, where n is the number of disks per unit area, sigma is the disk diameter, and L is the channel width. The collisions are specified using a normal coefficient of restitution e(n) and a tangential coefficient of restitution e(t). The analysis identifies two regions in the e(t) - e(n) parameter space, one where the final steady state is a static one in which the translational velocities of all particles decrease to zero, and the second where the final steady state is a dynamic one in which the mean square velocities scale as a power of epsilon in the limit epsilon --> 0. Both of these predictions are shown to be in quantitative agreement with computer simulations.  相似文献   

18.
The hydrodynamic equations of the Enskog theory for inelastic hard spheres is considered as a model for rapid flow granular fluids at finite densities. A detailed analysis of the shear viscosity of the granular fluid has been done using homogenous cooling state (HCS) and uniform shear flow (USF) models. It is found that shear viscosity is sensitive to the coefficient of restitution α and pair correlation function at contact. The collisional part of the Newtonian shear viscosity is found to be dominant than its kinetic part.  相似文献   

19.
In this paper the scale-invariant properties of the plane (2D) with the growth centre located on the charged particle have been considered. The dependence “number of particles with respect to radius of cluster” is presented by two power-law exponents that differs them from one power-law dependence characterizing the DLA (diffusion limited aggregation) clusters. In our case the interpretation the power-law exponents found in terms of the fractal dimension becomes unacceptable. The model considered it is supposed to be applied for consideration of similar clusters in polar liquids.  相似文献   

20.
《Physica A》2006,360(1):143-150
The dynamic evolution of granular gases is fundamentally different from molecular gases due to the energy loss during collisions. Nevertheless techniques of kinetic theory are useful in a regime, when the granular particles are moving rapidly and the gas is sufficiently dilute. In these lecture notes we analyse in detail the collision of two rough particles which is inelastic due to incomplete normal and tangential restitution as well as Coulomb friction. Based on the Walton model a time evolution operator for the many particle system is introduced, a formalism which is well suited for simple approximations. We discuss free cooling of granular particles with particular emphasis on the exchange of energy between rotational and translational degrees of freedom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号