首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we interpret the dark energy phenomenon as an averaged effect caused by small scale inhomogeneities of the universe with the use of the spatial averaged approach of Buchert. Two models are considered here, one of which assumes that the backreaction term ${\cal Q}_\mathcal{D}$ and the averaged spatial Ricci scalar $\langle\mathcal{R}\rangle_\mathcal{D}$ obey the scaling laws of the volume scale factor $a_\mathcal{D}$ at adequately late times, and the other one adopts the ansatz that the backreaction term ${\cal Q}_\mathcal{D}$ is a constant in the recent universe. Thanks to the effective geometry introduced by Larena et al. in their previous work, we confront these two backreaction models with latest type Ia supernova and Hubble parameter observations, coming out with the results that the constant backreaction model is slightly favoured over the other model and the best fitting backreaction term in the scaling backreaction model behaves almost like a constant. Also, the numerical results show that the constant backreaction model predicts a smaller expansion rate and decelerated expansion rate than the other model does at redshifts higher than about 1, and both backreaction terms begin to accelerate the universe at a redshift around 0.5.  相似文献   

2.
We constrain three cosmological models,i.e.,ACDM model, holographic dark energy(HDE) model and R_h = ct model by using the recent Pantheon compilation of type la supernovae(SN la), the direction measurements of Hubble parameter H(z), and the baryon acoustic oscillations(BAO). The spatial curvature is considered in the ACDM model and the HDE model. We show that the HDE model in a spatially flat and HDE dominate universe has the same behavior as Rh = ct model if the characteristic parameter of the HDE model C_0 approaches to infinity. Numerical results show that the ACDM model is the best favoured one among the three models. The HDE model is consistent with observational data, the best fitting value of C_0 is around 0.8, which implies that the Rh = ct model should be modified to be compatible with the present cosmological observational data. Combing all the datasets, we give strict constraint on the Hubble constant,where h_0=0.694 ± 0.020 for the ACDM model and h_0= 0.689 ±0.019 for the HDE model.Our results imply that the tension of Hubble constant between Planck collaborations and Riess et al. has been partially relaxed. The constraint on the spatial curvature is also given,where Ω_(k0) =-0.066 ± 0.165 for the ACDM model andΩ_(k0)=0.029 ± 0.067 for the HDE model.  相似文献   

3.
4.
5.
6.
In this paper, we study a kind of dark energy models in the framework of the non-minimal coupling. With this kind of models, dark energy could cross the cosmological constant boundary, and at early time, dark energy could have ``tracking" behavior.  相似文献   

7.
8.
In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameterζ∝λ01(1+z)n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset
(the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known $\Lambda$CDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r,s} as axes where the fixed point represents theΛCDM model. The possible singularity property in this bulk viscosity
cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous
increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling.  相似文献   

9.
I discuss the modification of Einstein's Theory of General Relativity based on a periodic functional approach. In this new approach, a corrected periodic gravitational coupling constant arises and plays the role of periodic damping term acting on the theory. It is found that it is achievable to have an oscillating universe dominated by dark energy and expanding aceeleratedly in time.  相似文献   

10.
I discuss the modification of Einstein's Theory of General Relativity based on a periodic functional approach. In this new approach, a corrected periodic gravitational coupling constant arises and plays the role of periodic damping term acting on the theory. It is found that it is achievable to have an oscillating universe dominated by dark energy and expanding acceleratedly in time.  相似文献   

11.
In this paper, we propose a new pressure parametric model of the total cosmos energy components in a spatially flat Friedmann-Robertson-Walker (FRW) universe and then reconstruct the model into quintessence and phantom scenarios, respectively. By constraining with the datasets of the type Ia supernova (SNe Ia), the baryon acoustic oscillation (BAO) and the observational Hubble parameter data(OHD), we find that Ωm0=0.270-0.034+0.039 at the 1σ level and our universe slightly biases towards quintessence behavior. Then we use two diagnostics including Om(a) diagnostic and statefinder to discriminate our model from the cosmology constant cold dark matter (ΛCDM) model. From Om(a) diagnostic, we find that our model has a relatively large deviation from the ΛCDM model at high redshifts and gradually approaches the ΛCDM model at low redshifts and in the future evolution, but they can be easily differentiated from each other at the 1σ level all along. By the statefinder, we find that both of quintessence case and phantom case can be well distinguished from the ΛCDM model and will gradually deviate from each other. Finally, we discuss the fate of universe evolution (named the rip analysis) for the phantom case of our model and find that the universe will run into a little rip stage.  相似文献   

12.
王斌 《中国物理 C》2007,31(9):874-879
从热力学角度研究了暗能量和暗物质之间的相互作用. 假设相互作用是平衡态上的涨落并考虑此涨落导致的熵的修正, 导出了相互作用的物理表述, 把我们模型和观测结果作了比较.  相似文献   

13.
The universe content is considered as a non-perfect fluid with bulk viscosity and can be described by a general equation of state (endowed some deviation from the conventionally assumed cosmic perfect fluid model). An explicitly bulk viscosity dark energy model is proposed to confront consistently with the current observationaldata sets by statistical analysis and is shown consistent with (not deviated away much from) the concordant Λ Cold Dark Matter (CDM) model by comparing the decelerating parameter. Also we compare our relatively simple viscosity dark energy model with a more complicated one by contrast with the concordant ΛCDM modeland find our model improves for the viscosity dark energy model building. Finally we discuss the perspectives of dark energy probes for the coming years with observations.  相似文献   

14.
WEI Hao 《理论物理通讯》2009,52(4):743-749
The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called ``entropy-corrected holographic dark energy' (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called ``entropy-corrected agegraphic dark energy' (ECADE).  相似文献   

15.
第五讲暗能量和德西特时空   总被引:1,自引:0,他引:1  
蔡荣根 《物理》2005,34(8):555-564
最近的天文观测表明,宇宙是在加速膨胀,而不是原来认为的减速膨胀.为解释加速膨胀,必须在宇宙的物质能量中引入暗能量这一成分,文章讨论了暗能量的可能侯选者,特别强调了宇宙常数问题、德西特时空问题以及和德西特时空相关的一些基本问题.  相似文献   

16.
Dark Energy     
  相似文献   

17.
In this paper, we investigate the new agegraphic dark energy model in the framework of Brans-Dicke theory, which is a natural extension of the Einstein's general relativity. In this framework the form of the new agegraphic dark energy density takes as ρq =3n2 φ(t) η-2, where η is the conformalage of the universe and φ(t) is the Brans-Dicke scalar field representing the inverse of the time-variable Newton's constant. We derive the equation of state of the new agegraphic dark energy and the deceleration parameter of the universe in the Brans-Dicke theory. It is very interesting to find that in the Brans-Dicke theory the agegraphic dark energy realizes quintom-like behavior,i.e., its equation of state crosses the phantom divide w=-1 duringthe evolution. We also compare the situation of the agegraphic darkenergy model in the Brans-Dicke theory with that in the Einstein'stheory. In addition, we discuss the new agegraphic dark energy modelwith interaction in the framework of the Brans-Dicke theory.  相似文献   

18.
The holographic dark energy (HDE) is now an studied extensively in the literature. In the derivation of HDE, interesting candidate of dark energy, which has been the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropyarea relation, we propose the so-called "entropy-corrected holographic dark energy" (ECHDE) in the present work. We consider many aspects of ECHDE and tlnd some interesting results. In addition, we briefly consider the so-called "entropy-eorreeted agegraphic dark energy" (ECADE).  相似文献   

19.
In this paper, we investigate the new agegraphic dark energy model in the framework of Brans-Dicke theory, which is a natural extension of the Einstein's general relativity. In this framework the form of the new agegraphic dark energy density takes as pq = 3n^2Ф(t)η^-2, where η is the conformal age of the universe and Ф(t) is the Brans-Dicke scalar field representing the inverse of the time-variable Newton's constant. We derive the equation of state of the new agegraphic dark energy and the deceleration parameter of the universe in the Brans-Dicke theory. It is very interesting to find that in the Brans-Dicke theory the agegraphic dark energy realizes quintom-like behavior, i.e., its equation of state crosses the phantom divide ω= -1 during the evolution. We also compare the situation of the agegraphic dark energy model in the Brans-Dicke theory with that in the Einstein's theory. In addition, we discuss the new agegraphic dark energy model with interaction in the framework of the Brans-Dicke theory.  相似文献   

20.
We investigate the statistical nature of holographic gas, which may represent the quasi-particle excitations of a strongly correlated gravitational system. We find that the holographic entropy can be obtained by modifying degeneracy. We calculate thermodynamical quantities and investigate stability of the holographic gas. When applying to cosmology, we find that the holographic gas behaves as holographic dark energy, and the parameter c in holographic dark energy can be calculated from our model. Our model of holographic gas generally predicts c 〈 1, implying that the fate of our universe is phantom-like.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号