首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We consider a two-qubit Heisenberg XXZ chain as a resource for quantum teleportation via the standard teleportation protocol To. The effects of anisotropic on teleportation fidelity and entanglement are studied in detail. We find anisotropic not only improves the criticM temperature Tc and criticM magnetic field Bc, beyond which quantum teleportation is inferior to classicM communication protocol, but also enhances the fidelity for fixed magnetic field B and temperature T. For entanglement teleportation, the effects of magnetic field on average fidelity and output entanglement are studied.  相似文献   

2.
The quantum teleportation via a two-qubit Ising Heisenberg chain in the presence of an external magnetic field with an arbitrary direction are investigated. The effect of the orientation of an external magnetic field on the entanglement teleportation has been analyzed numerically. It is found that the teleported thermal concurrence and average fidelity can be maximized by rotating the magnetic field (with fixed magnitude) to an optimal direction. The ferromagnetic channel is not suitable to teleportation. A minimal entanglement of the thermal state is needed to realize the entanglement teleportation for antiferromagnetic channel. It is also found that the entanglement of the channel cannot completely reflect the teleported concurrence and average fidelity. There exist double-value phenomena between them.  相似文献   

3.
By introducing the nonuniform magnetic field, we investigate the entanglement teleportation via two-qubit Heisenberg chain. We show that for ferromagnetic chain, the opposite direction magnetic field on the two-qubit chain can excite the teleported entanglement C out, while the uniform magnetic field can not do it. The effect of the uniform magnetic field B and the nonuniform magnetic field b on the threshold temperature T c is also plotted. Our study on the average fidelity of this quantum channel system shows that the magnetic field in opposite direction can result in the ideal average fidelity no matter whether the chain is ferromagnetic or antiferromagnetic.  相似文献   

4.
We study quantum teleportation via a two-qubit Heisenberg XXZ chain under an inhomogeneous magnetic field. We first consider entanglement teleportation, and then focus on the teleportation fidelity under different conditions. The effects of anisotropy and the magnetic field, both uniform and inhomogeneous, are discussed. We also find that, though entanglement teleportation does require an entangled quantum channel, a nonzero critical value of minimum entanglement is not always necessary.  相似文献   

5.
The quantum teleportation with the entangled thermal state is investigated based on the completely anisotropic Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisotropy and magnetic field for the quantum fidelity are studied in detail. The zero temperature limit and the features of the nonzero temperature for this nonclassical fidelity are obt8ained. We find that the quantum teleportation demands more stringent conditions than the thermal entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the critical temperature of the maximal teleportation fidelity. The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.  相似文献   

6.
唐煌  方建兴  钱学旻 《光子学报》2008,37(5):1063-1066
利用两个海森堡热纠缠信道,实现了一对量子纠缠态的隐形传送,求得输出的密度矩阵,进而算出隐形传送的保真度.分析外界环境(温度T和磁场B)对热纠缠及量子隐形传送的影响.发现在磁场较弱,温度很低的时候,以海森堡热纠缠混合态作为量子信道进行隐形传送优于经典信道.  相似文献   

7.
We study the pairwise entanglement of a three-qubit spins in the XXZ model, and teleport an unknown state using the spin chain in the thermal equilibrium as a quantum channel. The effects of coupling strength, magnetic field, the anisotropy and temperature on the entanglement and fidelity are investigated. We find that the ferromagnetic spin chain is suitable for quantum teleportation, while the anti-ferromagnetic one is not. We give the maximal average fidelity, and the condition under which the maximal average fidelity is obtained. In addition, the relation between the entanglement and fidelity is studied, and we find that the considered entanglement cannot completely reflect the fidelity.  相似文献   

8.
高丹  赵振双  朱爱东  王洪福  邵晓强  张寿 《中国物理 B》2010,19(9):90313-090313
This paper studies the average fidelity of teleportation and thermal entanglement for a two-qubit Heisenberg X Y Z chain in the presence of both an inhomogeneous magnetic field and a Dzyaloshinski-Moriya interaction. It shows that for a fixed Dz, the increase of bz will broaden the critical temperature at the cost of decreasing the thermal entanglement. And it can modulate the inhomogeneous magnetic field and the Dzyaloshinski-Moriya interaction for the average fidelity of teleportation to be optimal.  相似文献   

9.

We study qutrit teleportation through a qutrit xyz chain, in the presence of intrinsic decoherence and a non-homogeneous magnetic field. We study the effects of intrinsic phase change, magnetic field and entanglement of the initial state of the channel. It is observed that while the intrinsic phase change and the non-homogeneity of the magnetic field have adverse effects on the teleportation fidelity, the entanglement of the initial state of the channeled enhances the latter. Moreover, the intrinsic decoherence may remove the ripples from the time curve that is delivered by the Schrödinger channel.

  相似文献   

10.
研究了伊辛模型中两个粒子在均匀和非均匀磁场中的热纠缠以及利用它作为量子信息传输的通道的传输保真度.计算出纠缠度的度量Concurrence,以及在不同种情况下呈现出来的纠缠度的表现形为.与均匀磁场相反,我们发现在非均匀磁场中传输的保真度能够得到增强,同时我们发现保真度还与耦合系数和温度有关.我们通过图形清楚地表示它们的性质,从图形中我们得出,第一:在其它条件相同的情况下,无论磁场方向是相同还是相反,它们的纠缠度都是相同的;但是当磁场方向相反时,平均保真度比均匀磁场具有更大的值.第二:为了提高纠缠和平均保真度我们可以通过选择适当的磁场强度、耦合系数和降低温度来实现.  相似文献   

11.
We study the thermal output entanglement and teleportation in a two qubit Heisenberg XXZ chain with different Dzyaloshinskii-Moriya (DM) interactions. The analytical expressions of the output entanglement and the average fidelity are obtained for this model. We find the entanglement of replica states will be induced by some large value of Dz and the output entanglement exists for the case of Jz < − 1. The influences of the different DM interactions on the fidelity of teleportation are studied. We show that by introducing the x-component DM interaction, the average fidelity FA can reach its maximum value 1.  相似文献   

12.
In this paper we study the entanglement in a two-qubit spin in the XYZ model, and teleport a two-qubit entangled state using this spin chain in the condition of the thermal equilibrium as a quantum channel. We investigate the effects of the interaction of z-component Jz, the inhomogeneous magnetic field b, the anisotropy γ and the temperature T on the entanglement and fidelity. In order to characterize the quality of the teleported state, we research the average fidelity Fα. High average fidelity of the teleportation is obtained when the temperature is very low. Under some condition, we also find that when innomogeneity increases to a certain value, the average fidelity can exhibit a larger revival than that for less values of b.  相似文献   

13.
We devise the optimal form of Gaussian resource states enabling continuous-variable teleportation with maximal fidelity. We show that a nonclassical optimal fidelity of N-user teleportation networks is necessary and sufficient for N-party entangled Gaussian resources, yielding an estimator of multipartite entanglement. The entanglement of teleportation is equivalent to the entanglement of formation in a two-user protocol, and to the localizable entanglement in a multiuser one. Finally, we show that the continuous-variable tangle, quantifying entanglement sharing in three-mode Gaussian states, is defined operationally in terms of the optimal fidelity of a tripartite teleportation network.  相似文献   

14.
The ground state and thermal entanglement of a two-qubit spin system in the presence of the nonlinear coupling interaction is investigated. It is found that the nonlinear coupling interaction can excite and enhance the entanglement both for ferromagnetic chain and anti-ferromagnetic ones even at the higher temperature. The entanglement teleportation via the quantum channel constructed by this system is also discussed, and the influence of the nonlinear coupling interaction on the fidelity of the teleportation is studied. The results show that both the entanglement of the output state and the fidelity can be increased by inducing a proper nonlinear coupling interaction.  相似文献   

15.
黄利元  方卯发 《中国物理 B》2008,17(7):2339-2345
The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of tbe noisy quantum channel are studied }n detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.  相似文献   

16.
The dynamics of an entangled state interacting with a single cavity mode is investigated in the presence of a random parameter. We show that the degree of entanglement decays with time and that the rate of decay is defined by features of a random parameter. Quantum teleportation through a dissipative channel and teleportation fidelity as a function of damping rates have been studied. The sensitivity of the fidelity with respect to the random parameter is discussed. We have evaluated the time interval during which one can perform quantum teleportation and send the information with reasonable fidelity for given values of the correlation length of the random parameter.  相似文献   

17.
The modified mapping method is further improved by the expanded expression of u(ξ) that contains the terms of the first-order derivative of function f(ξ). Some new exact solutions to the mBBM equation are determined by means of the method. We can obtain many new solutions in terms of the Jacobi elliptic functions of the equation.  相似文献   

18.
In this article,we derive the explicit entanglement and fidelity expressions for a larger class of two-qubit states,namely,a seven-parameter family of so called X-states.The analytical expressions of the entanglement,the output entanglement and the average fidelity are obtained for this general model by using the concept of concurrence and average fidelity.We study the relations between quantum entanglement,the output entanglement,and the average fidelity for standard teleportation of one-qubit and partial teleportation of two-qubit state.We discover that the average fidelity and entanglement is not a simple dependence relation.The higher entangled system is helpful for teleportation.  相似文献   

19.
Optimal teleportation with a mixed state of two qubits   总被引:1,自引:0,他引:1  
We consider a single copy of a mixed state of two qubits and derive the optimal trace-preserving local operations assisted by classical communication such as to maximize the fidelity of teleportation that can be achieved with this state. These optimal local operations turn out to be implementable by one-way communication and always yield a teleportation fidelity larger than 2/3 if the original state is entangled. This maximal achievable fidelity is an entanglement measure and turns out quantifying the minimal amount of mixing required to destroy the entanglement in a quantum state.  相似文献   

20.
This paper mainly investigates the effects of different Dzyaloshinskii-Moriya (DM) anisotropic antisymmetric interactions on thermal entanglement and teleportation of one-qubit state in both the standard and non-standard protocols as well as the partial teleportation of an entangled state via a two-qubit Heisenberg XXZ spin chain in the presence of external magnetic fields. The dependency of the thermal entanglement and average fidelity on various system parameters is analyzed. The interplay of the different parameters on the teleportation is discussed. The DM interaction is found to be effective for the thermal entanglement in the spin chain both with and without external magnetic fields. However, it turned out to be destructive for the teleportation in the standard protocol, whereas is found constructive for single qubit teleportation when the spin chain with the z-direction parameters is used as the channel in the non-standard protocol. Moreover, the results show that, for teleporting one-qubit state, the antiferromagnetic (AFM) chain is the only qualified candidate in the standard protocol, while both the AFM and ferromagnetic (FM) chains with the parameters along the z-axis are all suitable in the non-standard protocol when the parameters are chosen appropriately. For the partial teleportation of entanglement, both the AFM and FM chains are eligible as long as the appropriate combinations of parameters are chosen. In addition, the comparison of the effects of the same, fixed x- and z-component parameters of the DM interaction (Dx and Dz) on teleportation is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号