首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we evaluate the influence of thermal desorber temperature on the analytical response of a swipe-based thermal desorption ion mobility spectrometer (IMS) for detection of trace explosives. IMS response for several common high explosives ranging from 0.1 ng to 100 ng was measured over a thermal desorber temperature range from 60 °C to 280 °C. Most of the explosives examined demonstrated a well-defined maximum IMS signal response at a temperature slightly below the melting point. Optimal temperatures, giving the highest IMS peak intensity, were 80 °C for trinitrotoluene (TNT), 100 °C for pentaerythritol tetranitrate (PETN), 160 °C for cyclotrimethylenetrinitramine (RDX) and 200 °C for cyclotetramethylenetetranitramine (HMX). By modifying the desorber temperature, we were able to increase cumulative IMS signal by a factor of 5 for TNT and HMX, and by a factor of 10 for RDX and PETN. Similar signal enhancements were observed for the same compounds formulated as plastic-bonded explosives (Composition 4 (C-4), Detasheet, and Semtex). In addition, mixtures of the explosives exhibited similar enhancements in analyte peak intensities. The increases in sensitivity were obtained at the expense of increased analysis times of up to 20 seconds. A slow sample heating rate as well as slower vapor-phase analyte introduction rate caused by low-temperature desorption enhanced the analytical sensitivity of individual explosives, plastic-bonded explosives, and explosives mixtures by IMS. Several possible mechanisms that can affect IMS signal response were investigated such as thermal degradation of the analytes, ionization efficiency, competitive ionization from background, and aerosol emission.  相似文献   

2.
Most pesticides, herbicides and other plant treatment agents are applied to the crop surface. Direct mass spectrometric methods, such as desorption electrospray ionization (DESI), offer new ways to analyze plant samples directly and rapidly. A strategy for the development and optimization of a DESI method for the direct determination of chemicals on complex surfaces is described. Chlorpropham (CP) was applied to potato surfaces as an example for a crop protection agent and analyzed using a self‐made DESI source. Aspects such as instrument selectivity, sensitivity and reproducibility were investigated. The MS4 fragmentation pattern of CP was analyzed to achieve the necessary detection selectivity, and is discussed in detail. Similar fragmentation was found in the ESI and DESI mass spectra, indicating that the mechanisms of ESI and DESI are closely related. A DESI method for semi‐quantification of CP on potatoes was developed. Detection limits of 6.5 µg/kg were found using MS/MS. The reproducibility, in the range of 12% (signal variation), appears to be sufficient for semi‐quantitative measurements. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
It is of increasing interest and practical importance to develop convenient methods based on mass spectrometry for high-throughput analyses of biological samples. This is usually difficult because of the complex matrix and ion suppression effects. Generation of ions at ambient conditions is a promising solution to these problems because the sample is easily accessible and the ion suppression effect is reduced significantly. A new method for rapid on-line detection of metabolic markers in complex biological samples is described here. It combines atmospheric pressure desorption sampling by a gentle stream of air or nitrogen with extractive electrospray ionization (EESI) and mass spectrometric analysis. The resulting mass spectral fingerprints are shown to be able to detect spoilage of meat even in the frozen (-20 degrees C) state and the contamination of spinach by E. coli, and to identify metabolites and contaminants on human skin within seconds, in an on-line and high-throughput fashion. Typical molecular markers are identified using MS/MS data and by comparison with reference compounds. Differences between closely related samples are easily visualized by using principal component analysis (PCA) of the mass spectra data. The detection limit achieved is 10 fg/cm2 (S/N = 3) for histamine on the surface of frozen meat. The technique reported here shows potential for more advanced applications in multiple disciplines, including food regulation, homeland security, in vivo metabolomics, and clinical diagnosis.  相似文献   

4.
5.
Desorption electrospray ionization (DESI) mass spectrometry is used to detect trace amounts of explosives present on a variety of ambient surfaces in 5-second analysis times without any sample preparation.  相似文献   

6.
Jiang  Shan  Liu  Shengda  Meng  Lingchen  Qi  Qingkai  Wang  Lipeng  Xu  Bin  Liu  Junqiu  Tian  Wenjing 《中国科学:化学(英文版)》2020,63(4):497-503
The development of conjugated nanomaterials with high sensitivity and super-amplified quenching effect for the detection of nitrophenol explosives is still a great challenge. Herein, we developed conjugated hollow nanospheres constructed by using aggregation-induced emission(AIE) active 1,3,5-tris(4-formyl-phenyl)benzene(TFPB). The high emission hollow nanospheres with uniform size and admirable dispersiveness exhibited obvious fluorescence quenching response with the addition of nitrophenol explosives owing to the photoinduced electron transfer(PET) from the hollow nanospheres to nitrophenol explosives. The Stern-Volmer constants of hollow spheres for 2,4,6-trinitrophenol(TNP), 4-nitrophenol(NP) and 2,4-dinitrophenol(DNP) can reach 9.67×105, 3.14×10~5 and 4.8×10~4 M~(-1), respectively. Furthermore, the handy test paper coated with hollow nanospheres was prepared and showed a good response toward TNP solutions and vapor. The study provides a novel strategy to construct AIE-active conjugated hollow nanospheres for efficient nitrophenol explosives sensing.  相似文献   

7.
8.
Rapid vaporization of sample into the ionizing gas exiting a direct analysis in real time (DART®) source has been enabled by directing a high electrical current through a metal wire screen to which sample has been applied. This direct heating of the screen enables rapid vaporization of sample as the wire temperature rises from room temperature to greater than 400°C in less than 20 s. Positioning the screen between the DART source and atmospheric pressure inlet of the mass spectrometer ensures that the ionizing gas is in close proximity to the sample molecules, resulting in efficient ionization while significantly reducing the time required for mass spectrometric analysis. The capability to modulate the electrical current flow through the wires facilitates either rapid desorption for the determination of single component samples or slower desorption where analysis of mixtures might be desired. The technology also enables deployment of strategies for the determination of chemicals present as powders that might otherwise require dissolution prior to analysis. Results from the use of this thermally assisted DART (‘TA‐DART’) system for the analysis of pure compounds, simple mixtures, solids and low vapor pressure samples are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Efficient desorption of selectively adsorbed N2 from air in a packed column of LiX zeolite by rapidly purging the adsorbent with an O2 enriched gas is an important element of a rapid cyclic pressure swing adsorption (RPSA) process used in the design of many medical oxygen concentrators (MOC). The amount of O2 purge gas used in the desorption process is a sensitive variable in determining the overall separation performance of a MOC unit. Various resistances like (a) adsorption kinetics, (b) column pressure drop, (c) non-isothermal column operation, (d) gas phase mass and thermal axial dispersions, and (e) gas-solid heat transfer kinetics determine the amount of purge gas required for efficient desorption of N2. The impacts of these variables on the purge efficiency were numerically simulated using a detailed mathematical model of non-isothermal, non-isobaric, and non-equilibrium desorption process in an adiabatic column. The purge gas quantity required for a specific desorption duty (fraction of total N2 removed from a column) is minimum when the process is carried out under ideal, hypothetical conditions (isothermal, isobaric, and governed by local thermodynamic equilibrium). All above-listed non-idealities (a?Ce) can increase the purge gas quantity, thereby, lowering the efficiency of the desorption process compared to the ideal case. Items (a?Cc) are primarily responsible for inefficient desorption by purge, while gas phase mass and thermal axial dispersions do not affect the purge efficiency under the conditions of operation used in this study. Smaller adsorbent particles can be used to reduce the negative effects of adsorption kinetics, especially for a fast desorption process, but increased column pressure drop adds to purge inefficiency. A?particle size range of ??300?C500???m is found to require a?minimum purge gas amount for a given desorption duty. The purge gas requirement can be further reduced by employing a pancake column design (length to diameter ratio, L/D<0.2) which lowers the column pressure drop, but hydrodynamic inefficiencies (gas mal-distribution, particle agglomeration) may be introduced. Lower L/D also leads to a smaller fraction of the column volume that is free of N2 at the purge inlet end, which is required for maintaining product gas purity. The simulated gas and solid temperature profiles inside the column at the end of the rapid desorption process show that a finite gas-solid heat transfer coefficient affects these profiles only in the purge gas entrance region of the column. The profiles in the balance of the column are nearly invariant to the values of that coefficient. Consequently, the gas-solid heat transfer resistance has a minimum influence on the overall integrated N2 desorption efficiency by O2 purge for the present application.  相似文献   

10.
Considering current security issues, powerful tools for detection of security-relevant substances such as traces of explosives and drugs/drug precursors related to clandestine laboratories are required. Especially in the field of detection of explosives and improvised explosive devices, several relevant compounds exhibit a very low vapor pressure. Ambient pressure laser desorption is proposed to make these substances available in the gas phase for the detection by adapted mass spectrometers or in the future with ion-mobility spectrometry as well. In contrast to the state-of-the-art thermal desorption approach, by which the sample surface is probed for explosive traces by a wipe pad being transferred to a thermal desorber unit, by the ambient pressure laser desorption approach presented here, the sample is directly shockwave ablated from the surface. The laser-dispersed molecules are sampled by a heated sniffing capillary located in the vicinity of the ablation spot into the mass analyzer. This approach has the advantage that the target molecules are dispersed more gently than in a thermal desorber unit where the analyte molecules may be decomposed by the thermal intake. In the technical realization, the sampling capillary as well as the laser desorption optics are integrated in the tip of an endoscopic probe or a handheld sampling module. Laboratory as well as field test scenarios were performed, partially in cooperation with the Federal Criminal Police Office (Bundeskriminalamt, BKA, Wiesbaden, Germany), in order to demonstrate the applicability for various explosives, drugs, and drug precursors. In this work, we concentrate on the detection of explosives. A wide range of samples and matrices have been investigated successfully.  相似文献   

11.
Matrix-assisted laser desorption/ionization - imaging mass spectrometry is an alternative tool, which can be implemented in order to obtain and visualize the “omic” signature of tissue samples. Its application to clinical study enables simultaneous imaging-based morphological observations and mass spectrometry analysis. Application of fully informative material like tissue allows obtaining the complex and unique profile of analyzed samples. This knowledge leads to diagnosing disease, studying the mechanism of cancer development, selecting the potential biomarkers as well as correlating obtained images with prognosis. Nevertheless, it is worth noticing that this method is found to be objective but the result of the analysis is mainly influenced by the sample preparation protocol, including the collection of biological material, its preservation, and processing. However, the application of this approach requires a special sample preparation procedure. The main goal of the study is to present the current knowledge on the clinical application of matrix-assisted laser desorption/ionization with imaging mass spectrometry in cancer research, with particular emphasis on the sample preparation step. For this purpose, several protocols based on cryosections and formalin-fixed paraffin-embedded tissue were compiled and compared, taking into account the measured metabolites of potential diagnostic importance for a given type of cancer.  相似文献   

12.
Summary Polycyclic aromatic hydrocarbons (PAH) today are ubiquitous detectable constituents of recent sediments. The compounds are adsorbed on particulate emissions and are thus transferred to the environment. To date the analysis of PAH in sediments, dust samples and plant material is based mainly on the application of solvent-extraction methods followed by liquid chromatography and/or gas chromatographic separation of the extracts.An alternative approach for the analysis of PAH in solid samples such as coal, sediments, dust samples and plant waxes is shown in this contribution. A commercially available device for the analysis of volatile compounds present in solid matter is connected on-line to a GC/MS system. The device enables the thermal desorption of hydrocarbons at a temperature of 320°C. Subsequently, the hydrocarbons trapped on the initial part of the capillary column are analyzed by GC/MS. The application of mass chromatography provides the possibility of detection and quantitation of PAH in complex mixtures even when they coelute with other compounds. The sample amount required varies between 1 and 10 mg depending on the hydrocarbon content.  相似文献   

13.
An ultrasonic bath, an ultrasonic probe and a sonoreactor were used to speed up the kinetics of the reactions involved in each step of the sample handling for in-gel protein identification by peptide mass fingerprint, PMF, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The following steps were successfully accelerated using ultrasonic energy: gel washing, protein reduction, and protein alkylation. As a result, a reduction comprising 80% to 90% of the total time involved in the classic approach was achieved. In addition the sample handling was also drastically simplified. The number of peptides identified and the protein sequence coverage obtained for the new procedure were comparable to those obtained with the traditional sample treatment for the following protein standards: glycogen phosphorylase b, BSA, ovalbumin, carbonic anhydrase, trypsin inhibitor and alpha-lactalbumin. Finally, as a proof of the procedure, specific proteins were identified from complex protein mixtures obtained from three different sulphate-reducing bacteria: Desulfovibrio desulfuricans G20, Desulfuvibrio gigas NCIB 9332, and Desulfuvibrio desulfuricans ATCC 27774.  相似文献   

14.
An electrospun nanofibrous explosive sensor was first constructed based on a newly developed fluorescent conjugated polymer P containing heteroatom polycyclic units. Electrospinning by doping polymer P as a fluorescent probe in a polystyrene supporting matrix afforded a fluorescence nanofibrous film with unique porous structures, and effectively avoided the aggregation of polymer P. The novel explosive sensor exhibited stable fluorescence property, satisfactory reversibility with less than 5% loss of signal intensity after four quenching–regeneration cycles, and good reproducibility among three batches with a relative standard deviation of 2.8%. Such fabricated sensor also showed remarkable sensitivity toward a series of trace nitroaromatic explosive vapors, including picric acid (parts-per-trillion level) and 2,4,6-trinitrotoluene vapor (parts-per-billion level), as well as good selectivity with less than 10% response to typical interferents. Therefore, the present strategy extends the application of different kinds of conjugated polymers for the construction of optical chemosensors.  相似文献   

15.
Kong R  Bhargava R 《The Analyst》2011,136(11):2359-2366
Porcine skin is often considered a substitute for human skin based on morphological and functional data, for example, for transdermal drug diffusion studies. A chemical, structural and temporal characterization of porcine skin in comparison to human skin is not available but will likely improve our understanding of this porcine skin model. Here, we employ Fourier transform infrared (FT-IR) spectroscopic imaging to holistically measure chemical species as well as spatial structure as a function of time to characterize porcine skin as a model for human skin. Porcine skin was found to resemble human skin spectroscopically and differences are elucidated. Cryo-prepared fresh porcine skin samples for spectroscopic imaging were found to be stable over time and small variations are observed. Hence, we extended characterization to the use of this model for dynamic processes. In particular, the capacity and stability of this model in transdermal diffusion is examined. The results indicate that porcine skin is likely to be an attractive tool for studying diffusion dynamics of materials in human skin.  相似文献   

16.
Using recent developments in proton transfer reaction mass spectrometry, proof-of-principle investigations are reported here to illustrate the capabilities of detecting solid explosives in real-time. Two proton transfer reaction time-of-flight mass spectrometers (Ionicon Analytik) have been used in this study. One has an enhanced mass resolution (m/Δm up to 8000) and high sensitivity (~50 cps/ppbv). The second has enhanced sensitivity (~250 cps/ppbv) whilst still retaining high resolution capabilities (m/Δm up to 2000). Both of these instruments have been successfully used to identify solid explosives (RDX, TNT, HMX, PETN and Semtex A) by analyzing the headspace above small quantities of samples at room temperature and from trace quantities not visible to the naked eye placed on surfaces. For the trace measurements a simple pre-concentration and thermal desorption technique was devised and used. Importantly, we demonstrate the unambiguous identification of threat agents in complex chemical environments, where multiple threat agents and interferents may be present, thereby eliminating false positives. This is of considerable benefit to security and for the fight against terrorism.  相似文献   

17.
18.
The thermal properties of 2,3-dimethyl-2,3-dinitrobutane (DMNB), a detection agent for explosives, have been determined by DSC measurements. Additionally, the results of an NMR study are compared with conclusions arrived at in the literature with regard to the source of two endotherms observed in the DSC. The thermal decomposition of DMNB is characterized by an exotherm with an energy in excess of 3 kJ g?1, observed in conjunction with a third endotherm resulting from the fusion of DMNB. Arrhenius parameters determined from both variable heating rate and isothermal measurements in the DSC are compared with predicted values assuming various mechanisms for the decomposition process.  相似文献   

19.
A colloidal gold conjugated anti-baicalin monoclonal antibody (anti-BA MAb) was prepared and used in an immunochromatographic assay (ICA) for BA in Scutellariae Radix and Kampo medicines. This competitive ICA uses an anti-BA MAb which shows a high specificity for BA and baicalein. Its advantages include a short assay time (15 min), no dependence on any instrumental systems, and it can detect BA in plant materials and Kampo medicines. The limit of detection for the ICA was found to be around 0.6 μg mL−1of baicalin. Moreover, the usefulness of the combination of indirect competitive ELISA and the ICA using anti-BA MAb as a quality control method was confirmed for analysis of BA in Scutellariae Radix and Kampo medicines with a sufficient sensitivity (200 ng mL−1 to 2 μg mL−1), obtainable in an easy and timely manner.  相似文献   

20.
Relying on recent developments in proton transfer reaction mass spectrometry (PTR-MS), we demonstrate here the capability of detecting solid explosives in air and in water in real time. Two different proton transfer reaction mass spectrometers have been used in this study. One is the PTR-TOF 8000, which has an enhanced mass resolution (mm up to 8,000) and high sensitivity (~50 cps/ppbv). The second is the high-sensitivity PTR-MS, which has an improved limit of detection of about several hundreds of parts per quadrillion by volume and is coupled with a direct aqueous injection device. These instruments have been successfully used to identify and monitor the solid explosive 2,4,6-trinitrotoluene (TNT) by analysing on the one hand the headspace above small quantities of samples at room temperature and from trace quantities not visible to the naked eye placed on surfaces (also demonstrating the usefulness of a simple pre-concentration and thermal desorption technique) and by analysing on the other hand trace compounds in water down to a level of about 100 pptw. The ability to identify even minute amounts of threat compounds, such as explosives, particularly within a complex chemical environment, is vital to the fight against crime and terrorism and is of paramount importance for the appraisal of the fate and harmful effects of TNT at marine ammunition dumping sites and the detection of buried antipersonnel and antitank landmines.
Figure
Detecting TNT vapour with a high resolution PTR-TOF  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号