首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chirality is an intriguing and intrinsic feature of life and is highly associated with many significant biological processes. However, whether it influences the translocation behavior of proteins remains unclear. Herein, based on biomimetic strategies, we made chiral nanopores modified with cysteine enantiomers, and studied the chirality gating effects on protein transport. The results show that protein is preferentially transported through nanopores modified with l -cysteine because of chiral interaction, indicating chirality strongly influences protein transport process. This study presents a new method for better understanding the role of chirality in selective protein transport processes and provides a convenient approach for studying protein chiral separation and targeted treatments.  相似文献   

2.
Development of new generations of membranes with high degrees of permeabilities and controllable mass transport properties requires a fundamental understanding of the relationship between molecular structures and permeabilities. Initiation of interdisciplinary research in biology, biophysics, polymer and colloid chemistry is proposed to provide the insight to membrane transport processes at the molecular level. Mother nature's most talented transporter — the biological membrane — should inspire this endeavor. Following a survey of the properties of, and recognized transport mechanisms in, biomembranes, membrane-mimetic chemistry is introduced to serve as a bridge between biological and polymeric membranes. Surfactant aggregates — micelles, monolayers, organized multilayers (Langmuir—Blodgett films), bilayer lipid membranes (BLMs), vesicles and polymerized vesicles — are shown to be the media in membrane-mimetic chemistry. Properties of these organized surfactant assemblies are summarized. Emphasis is placed on the control of molecular transport in membrane-mimetic systems. Perspectives and prospectives of biomimetic membranology are discussed.  相似文献   

3.
Knowledge of the mesoscopic morphology of condensed phase domains formed after the main phase transition in the two-phase coexistence region of Langmuir monolayers progressed rapidly with the development of the highly-sensitive imaging techniques, particularly by Brewster angle microscopy (BAM). Latest developments of commercial BAM instruments have been developed to a high technical level and allow upgrading to imaging ellipsometers which combine optical microscopy and ellipsometry and make the assessment of small layered structures or patterned thin films possible. A large variety of condensed phase domains different in mesoscopic sizes and shapes as well as their textural features has been observed which depend sensitively on the chemical structure of the amphiphilic monolayer and the system conditions, such as surface pressure and temperature. This unsuspected morphological variety of condensed phase domains has been proven not only in Langmuir monolayers but also in adsorbed monolayers (Gibbs monolayers), in Langmuir monolayers penetrated by dissolved surfactants or in adequate molecular recognition systems. The inner textures of domains can be explained on the basis of their geometry and the two-dimensional lattice in dependence of the tilt angle of the alkyl chains and gave rise to the development of a geometric concept on the basis of the molecular packing. New knowledge has been gained about non-equilibrium structures and their transition kinetics into the equilibrium state. Combined results obtained recently by BAM have enhanced the understanding of molecular organization in phase diagrams and binary mixtures. Recent advances in model studies about chiral discrimination effects and of the highly specific structural changes of host-monolayers by recognition of non-surface active guest-components have made progress. Semi-empirical quantum chemical methods have been used to gain insight into the role of different types of interactions involved in the main characteristics of mesoscopic length scale aggregates of mimetic systems.  相似文献   

4.
Peptides, the fundamental building units of biological systems, are chiral in molecular scale as well as in spatial conformation. Shells are exquisite examples of well‐defined chiral structures produced by natural biomineralization. However, the fundamental mechanism of chirality expressed in biological organisms remains unclear. Here, we present a system that mimics natural biomineralization and produces enantiopure chiral inorganic materials with controllable helicity. By tuning the hydrophilicity of the amphiphilic peptides, the chiral morphologies and mesostructures can be changed. With decreasing hydrophilicity of the amphiphilic peptides, we observed that the nanostructures changed from twisted nanofibers with a hexagonal mesostructure to twisted nanoribbons with a lamellar mesostructure, and the extent of the helicity decreased. Defining the mechanism of chiral inorganic materials formed from peptides by noncovalent interactions can improve strategies toward the bottom‐up synthesis of nanomaterials as well as in the field of bioengineering.  相似文献   

5.
Organic molecules with accompanying self‐organization have been a great subject in chemistry, material science and nanotechnology in the past two decades. One of the most important roles of organized organic molecules is the capability of templating complexly structured inorganic materials. The focus of this Minireview is on nanostructured silica with divergent morphologies and/or integrated chirality directed by organic templates of self‐assembled polyamine/polypeptides/block copolymers, chiral organogels, self‐organized chiral amphiphiles and chiral crystalline complexes, etc., by biomimetic silicification and conventional sol–gel reaction. Among them, biosilica (diatoms and sponges)‐inspired biomimetic silicifications are particularly highlighted.  相似文献   

6.
Chiral interfaces and molecular recognition phenomena are of special interest not only for the understanding of biological recognition processes but also for the potential application in material science. Langmuir monolayers at the air-water interface have successfully been used as simple models to mimic biological phenomena. Recent experimental studies revealed that both chirality and molecular recognition processes of amphiphiles are controlling the features of the nano-aggregates at the air/water interface. The objective of experimental studies has been to gain information about the properties of mesoscopic length scale aggregates obtained on the basis of chiral discrimation effects and the formation of supramolecular entities by molecular recognition of non-surface active species dissolved in the aqueous subphase. Differences in the two-dimensional morphology and lattice structures of the nano-aggregates cannot be explained by macroscopic theories and needed information about the detailed orientation and distance dependence of the intermolecular interaction within the aggregates. First new bottom-up studies have been directed toward understanding the driving forces for the aggregation processes of monolayers. Different types of interactions have been successfully considered using semi-empirical quantum chemical methods. The possibilities of Langmuir-Blodgett (LB) patterning to be an alternative paradigm for large-area patterning with mesostructured features are discussed.  相似文献   

7.
Optical chirality sensing has attracted a lot of interest due to its potential in high-throughput screening in chirality analysis. A molecular sensor is required to convert the chirality of analytes into optical signals. Although many molecular sensors have been reported, sensors with wide substrate scope remain to be developed. Herein, we report that the amide naphthotube-based chirality sensors have an unprecedented wide scope for chiroptical sensing of organic molecules. The substrates include, but are not limited to common organic products in asymmetric catalysis, chiral molecules with inert groups or remote functional groups from their chiral centers, natural products and their derivatives, and chiral drugs. The effective chirality sensing is based on biomimetic recognition in water and on effective chirality transfer through guest-induced formation of a chiral conformation of the sensors. Furthermore, the sensors can be used in real-time monitoring on reaction kinetics in water and in determining absolute configurations and ee values of the products in asymmetric catalysis.  相似文献   

8.
Amphiphile supramolecular assemblies result from the cooperative effects of multiple weak interactions between a large number of subcomponents. As a result, prediction of and control over the morphologies of such assemblies remains difficult to achieve. Here, we described the fine-tuning of the shape, size, and morphology transitions of twisted and helical membranes formed by non-chiral dicationic n-2-n gemini amphiphiles complexed with chiral tartrate anions. We have reported that such systems express the chirality of the tartrate components at a supramolecular level and that the mechanism of the chiral induction by counterions involves specific anion cation recognition and the induction of conformationally labile chirality in the cations. Here, we demonstrate that the morphologies and dimensions of twisted and helical ribbons, as well as tubules, can be controlled and that interconversion between these structures can be induced upon modifying temperature, upon introducing small amounts of additives, or slightly modifying molecular structure. Specifically, electron microscopy, IR spectroscopy, and small-angle X-ray scattering show that (i) varying the hydrophobic chain length or adding gemini having bromide counterions (1%) or the opposite enantiomer (10%) leads to an increase of the diameter of membrane tubules from 33 to 48.5 nm; (ii) further addition (1.5%) of gemini bromide or a slight increase in temperature induces a transition from tubules to twisted ribbons; (iii) the twist pitch of the ribbons can be continuously tuned by varying enantiomeric excess; and (iv) it was also observed that the morphologies of these ribbons much evolve with time. Such unprecedented observations over easy tuning of the chiral supramolecular structures are clearly related to the original feature that the induction of chirality is solely due the counterions, which are much more mobile than the amphiphiles.  相似文献   

9.
牛血清蛋白单层膜诱导形成网状结构的羟基磷灰石   总被引:5,自引:0,他引:5       下载免费PDF全文
0引言近来利用生物矿化的方法来合成具有特殊结构的晶体材料成为材料合成的一个热点[1.2]。羟基磷灰石(HAP)作为一种生物材料,广泛地存在于人和动物的骨骼和牙齿中,是生物矿化的产物。在骨骼的修复、替代和仿生抗菌陶瓷薄膜中有重要的应用[3]。因此,利用生物矿化的方法合成具有  相似文献   

10.
Chiral phenomena are ubiquitous in nature from macroscopic to microscopic, including the high chirality preference of small biomolecules, special steric conformations of biomacromolecules induced by it, as well as chirality-triggered biological and physiological processes. The introduction of chirality into the study of interface interactions between materials and biological systems leads to the generation of chiral biointerface materials, which provides a new platform for understanding the chiral phenomena in biological system, as well as the development of novel biomaterials and devices. This critical review gives a brief introduction to the recent advances in this field. We start from the fabrication of chiral biointerface materials, and further investigate the stereo-selective interaction between biological systems and chiral interface materials to find out key factors governing the performance of such materials in given conditions, then introduce some special functionalities and potential applications of chiral biointerface materials, and finally present our own thinking about the future development of this area (108 references).  相似文献   

11.
Helical topological structures are often found in chiral biological systems, but seldom in synthesized polymers. Now, controllable microphase separation of amphiphilic liquid‐crystalline block copolymers (LCBCs) consisting of hydrophilic poly(ethylene oxide) and hydrophobic azobenzene‐containing poly(methylacrylate) is combined with chirality transfer to fabricate helical nanostructures by doping with chiral additives (enantiopure tartaric acid). Through hydrogen‐bonding interactions, chirality is transferred from the dopant to the aggregation, which directs the hierarchical self‐assembly in the composite system. Upon optimized annealing condition, helical structures in film are fabricated by the induced aggregation chirality. The photoresponsive azobenzene mesogens in the LCBC assist photoregulation of the self‐assembled helical morphologies. This allows the construction and non‐contact manipulation of complicated nanostructures.  相似文献   

12.
Chirality is an intriguing and intrinsic feature of life and is highly associated with many significant biological processes. However, whether it influences the translocation behavior of proteins remains unclear. Herein, based on biomimetic strategies, we made chiral nanopores modified with cysteine enantiomers, and studied the chirality gating effects on protein transport. The results show that protein is preferentially transported through nanopores modified with l ‐cysteine because of chiral interaction, indicating chirality strongly influences protein transport process. This study presents a new method for better understanding the role of chirality in selective protein transport processes and provides a convenient approach for studying protein chiral separation and targeted treatments.  相似文献   

13.
Chirality is a fundamental construct in nature which arises from an antisymmetric arrangement of atoms, molecules, or larger structures, resulting in the formation of nonsuperimposable mirror images. Bulk chiral effects can easily be measured using circular dichroism (CD) or optical rotary dispersion (ORD). However, the imaging of chirality originating from molecular surface films cannot be obtained with these linear optical methods. By using chiral second harmonic generation (C-SHG), with its inherent surface sensitivity and ability to discriminate between the symmetry of surface adsorbed species in combination with a counter-propagating optical geometry, we have developed the first nonlinear chiral microscope. In the study presented here, the intrinsic chirality of R- and S-(+)-1,1'-bi-2-naphthol (RBN, SBN) has been used to image a patterned planar supported lipid bilayer (PSLB) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using C-SHG. Spatial resolution of the patterned PSLB is visible when either RBN or SBN is intercalated into the membrane. No image is observed when a racemic mixture of RBN and SBN is present. The C-SHG images are compared with those obtained from fluorescence microscopy to verify the C-SHG imaging technique. The results presented here demonstrate that C-SHG possesses the requisite surface selectivity and sensitivity to detect interfacial chirality and provides a direct route for the visualization of chirality originating from molecular surface films.  相似文献   

14.
Summary: This article gives a review on self-assembled nanofibrillar aggregates such as helical, twisted ribbon-like and tubular forms, those are produced in aqueous bilayer membrane and organogel systems. Two common features necessary for the chemical structure that yields special morphology are a chiral carbon atom and moieties feasible for intermolecular interactions although there are some exceptions. In aqueous systems, a hydrophobic effect is also an essential driving force for molecular aggregates in aqueous solution systems but almost disappear in organic media. More positive intermolecular interactions play an important role in molecular aggregation in organic media. Hydrogen bonding interaction is especially effective and many organogelators are classified into this category. Some lipophilic peptides have been investigated not only as organogelators but also with respect to their self-assembling behaviors. This latter property gives them distinct advantages compared with conventional gel systems because the gels include highly-ordered structures supramolecular functions like aqueous lipid membranes through molecular orientation. This article also introduces applicability of the organogel system.  相似文献   

15.
Chirality,commonly found in organisms,biomolecules and nature such as L-amino acids and D-sugars,has been extensively studied in chemistry and biomedical science.Hence,the demand for simple and efficient construction of chiral structures,especially chiral polymers,has been rapidly growing due to their potential applications in chemosensors,asymmetric catalysis and biological materials.However,most chiral polymers reported are prepared directly from chiral monomers/chiral catalysts,the corresponding strategies usually involve tedious and expensive design and synthesis.Fortunately,chirality induction strategies (such as circularly polarized light,chiral solvation and chiral gelation etc.) have been known to be highly versatile and efficient in producing chirality from achiral polymers.In this feature article,the current research on chirality induction,transfer and application in achiral polymer systems is summarized.Furthermore,this article discusses some basic concepts,seminal studies,recent advances,the structural design principles,as well as perspectives in the construction and applications of chiral polymers derived from achiral monomers,with the hope to attract more interest from researchers and further advance the development of chiral chemistry.  相似文献   

16.
Surface science techniques have been used to investigate 2D chirality induced by molecular adsorption at the Cu(1 1 0) surface. Particular emphasis has been devoted to presenting molecular resolution scanning tunnelling microscope images which provide direct, real-space access to chiral behaviour at the nanoscale. The systems chosen demonstrate the gamut of chiral organization: conglomerates, racemates and solid solutions. They show the creation of chirality from achiral adsorbates, and the enantiospecific hosting of an intrinsic chiral guest. In short, chirality at surfaces manifests its full range of behaviours, and STM provides the means by which that behaviour can be captured.  相似文献   

17.
The contradiction between the rising demands of optical chirality sensing and the failure in chiral detection of cryptochiral compounds encourages researchers to find new methods for chirality amplification. Inspired by planar chirality and the host–guest recognition of pillararenes, we establish a new concept for amplifying CD signals of cryptochiral molecules by pillararene host–guest complexation induced chirality amplification. The planar chirality of pillararenes is induced and stabilized in the presence of the chiral guest, which makes the cryptochiral molecule detectable by CD spectroscopy. Several chiral guests are selected in these experiments and the mechanism of chiral amplification is studied with a non-rotatable pillararene derivative and density functional theory calculations. We believe this work affords deeper understanding of chirality and provides a new perspective for chiral sensing.  相似文献   

18.
Compression beyond the collapse of phospholipid monolayers on a modified Langmuir trough has revealed the formation of stable multilayers at the air-water interface. Those systems are relevant new models for studying the properties of biological membranes and for understanding the nature of interactions between membranes and peptides or proteins. The collapse of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-[phospho-l-serine] (DOPS), 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-phosphocholine (DOPC), and 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-[phospho-1-rac-glycerol] (DOPG) monolayers has been investigated by isotherm measurements, Brewster angle microscopy (BAM), and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). In the cases of DMPC and DOPS, the collapse of the monolayers revealed the formation of bilayer and trilayer structures, respectively. The DMPC bilayer stability has been analyzed also by a molecular dynamics study. The collapse of the DOPC and DOPG systems shows a different behavior, and the Brewster angle microscopy reveals the formation of luminous bundles, which can be interpreted as diving multilayers in the subphase.  相似文献   

19.
We report the formation of highly-ordered self-assembled monolayers of an achiral organic semiconductor molecule. STM results show spontaneous formation of very large single domains of ordered chiral monolayers. DFT calculations support the identification of halogen bonds as the primary interactions that steer molecular self-assembly, leading to organizational chirality.  相似文献   

20.
The contradiction between the rising demands of optical chirality sensing and the failure in chiral detection of cryptochiral compounds encourages researchers to find new methods for chirality amplification. Inspired by planar chirality and the host–guest recognition of pillararenes, we establish a new concept for amplifying CD signals of cryptochiral molecules by pillararene host–guest complexation induced chirality amplification. The planar chirality of pillararenes is induced and stabilized in the presence of the chiral guest, which makes the cryptochiral molecule detectable by CD spectroscopy. Several chiral guests are selected in these experiments and the mechanism of chiral amplification is studied with a non‐rotatable pillararene derivative and density functional theory calculations. We believe this work affords deeper understanding of chirality and provides a new perspective for chiral sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号