首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J Sun  M Li  C Liu  Y Zhang  D Liu  W Liu  G Hu  X Jiang 《Lab on a chip》2012,12(20):3952-3960
This work reports on a passive double spiral microfluidic device allowing rapid and label-free tumor cell separation and enrichment from diluted peripheral whole blood, by exploiting the size-dependent hydrodynamic forces. A numerical model is developed to simulate the Dean flow inside the curved geometry and to track the particle/cell trajectories, which is validated against the experimental observations and serves as a theoretical foundation for optimizing the operating conditions. Results from separating tumor cells (MCF-7 and Hela) spiked into whole blood indicate that 92.28% of blood cells and 96.77% of tumor cells are collected at the inner and the middle outlet, respectively, with 88.5% tumor recovery rate at a throughput of 3.33 × 10(7) cells min(-1). We expect that this label-free microfluidic platform, driven by purely hydrodynamic forces, would have an impact on fundamental and clinical studies of circulating tumor cells.  相似文献   

2.
The integration of complete analyses systems "on chip" is one of the great potentials of microfabricated devices. In this study we present a new pressure-driven microfabricated fluorescent-activated cell sorter chip with advanced functional integration. Using this sorter, fluorescent latex beads are sorted from chicken red blood cells, achieving substantial enrichments at a sample throughput of 12000 cells s(-1). As a part of the sorter chip, we have developed a monolithically integrated single step coaxial flow compound for hydrodynamic focusing of samples in flow cytometry and cell sorting. The structure is simple, and can easily be microfabricated and integrated with other microfluidic components. We have designed an integrated chamber on the chip for holding and culturing of the sorted cells. By integrating this chamber, the risk of losing cells during cell handling processes is eliminated. Furthermore, we have also developed integrated optics for cell detection. Our new design contributes to the ongoing efforts for building a fully integrated micro cell sorting and analysing system.  相似文献   

3.
An integrated optofluidic platform for Raman-activated cell sorting   总被引:2,自引:0,他引:2  
Lau AY  Lee LP  Chan JW 《Lab on a chip》2008,8(7):1116-1120
We report on integrated optofluidic Raman-activated cell sorting (RACS) platforms that combine multichannel microfluidic devices and laser tweezers Raman spectroscopy (LTRS) for delivery, identification, and simultaneous sorting of individual cells. The system allows label-free cell identification based on Raman spectroscopy and automated continuous cell sorting. Two optofluidic designs using hydrodynamic focusing and pinch-flow fractionation are evaluated based on their sorting design and flow velocity effect on the laser trapping efficiency at different laser power levels. A proof-of-principle demonstration of the integrated optofluidic LTRS system for the identification and sorting of two leukemia cell lines is presented. This functional prototype lays the foundation for the development of a label-free cell sorting platform based on intrinsic Raman markers for automated sampling and sorting of a large number of individual cells in solution.  相似文献   

4.
Microfluidic cell sorter allows efficient separation of small number of cells, which is beneficial in handling cells, especially primary cells that cannot be expanded to large populations. Here, we demonstrate a microfluidic fluorescence-activated cell sorter (μFACS) with a novel sorting mechanism, in which automatic on-chip sorting is realized by turning on/off the hydrodynamic gating valve when a fluorescent target is detected. Formation of the hydrodynamic gating valve was investigated by both numerical simulation and flow visualization experiment. Separation of fluorescent polystyrene beads was then conducted to evaluate this sorting mechanism and to optimize the separation conditions. Isolation of fluorescent HeLa-DsRed cells was further demonstrated with high purity and recovery rate. Viability of the sorted cells was also examined, suggesting a survival rate of more than 90%. We expect this sorting approach to find widespread applications in bioanalysis.  相似文献   

5.
Wang MW 《Electrophoresis》2012,33(5):780-787
To sort and separate erythrocytes contaminated by lead (II) from whole bloodstream flow, the first step is to use a microchannel to transport the blood cells into a microdevice. Within the device, polluted erythrocytes can be separated from the bloodstream by applying local dielectrophoretic (DEP) forces. Exploiting the fact that Pb(2+) ions attach to the membranes of the erythrocytes, we utilize the microfluidic DEP device to perform property-based fractionation of the blood samples and to separate the polluted erythrocytes from the continuous bloodstream flow. Atomic absorption spectrometer analysis reveals that, to remove lead-polluted erythrocytes, the most effective driving velocity was less than 0.1 cm/s through our microfluidic DEP device, based on an applied power of 10 V(peak-peak) and a frequency of 15.5 MHz AC field. We were able to remove 80% of the polluted erythrocytes. Using gentle DEP manipulating techniques to efficiently sort unique cells within a complex biological sample may potentially allow biological sorting to be performed outside of hospitals, in facilities without biological analyzing equipment.  相似文献   

6.
This paper presents an innovative micro flow cytometer which is capable of counting and sorting cells or particles. This compact device employs electrokinetic forces rather than the more conventional hydrodynamic forces technique for flow focusing and sample switching, and incorporates buried optical fibers for the on-line detection of cells or particles. This design approach results in a compact microfluidic system and an easier integration process. The proposed cytometer integrates several critical modules, namely electrokinetic-focusing devices, built-in control electrodes, buried optical fibers for on-line detection, and electrokinetic flow switches for bio-particle collection. A linear relationship exists between the focused stream width (d) and the focusing ratio (F/φ), which is estimated to be D≈134.5−53.8F/φ. The relationship between the particle velocity (U) and the applied voltage (V) is also investigated. Numerical and experimental data confirm the effectiveness of the device when applied to the counting and sorting of 10 μm diameter particles and red blood cells.  相似文献   

7.
The behavior of microparticles exposed to gravitational and lift forces and to the velocity gradient in flow velocity profile formed in microfluidic conduits is studied from the viewpoint of the transient period (the relaxation) between the moment at which a particle starts to be transported by the hydrodynamic flow and the time at which it reaches an equilibrium position, characterized by a balance of all active forces. The theoretical model allowing the calculation of the relaxation time is proposed. The numerical calculus based on the proposed model is compared with the experimental data obtained under different experimental conditions, namely, for different lengths of microfluidic channels, different average linear velocities of the carrier liquid, and different sizes and densities of the particles used in the study. The results are important for the optimization of microfluidic separation units such as microthermal field-flow fractionation channels in which the separation or manipulation of the microparticles of various origin, synthetic, natural, biological, etc., is performed under similar experimental conditions but by applying an additional thermodynamic force.
Figure
Trajectory of a particle transported by fluid flow in microfluidic channel and undergoing the effect of external filed force and lift force.  相似文献   

8.
Moon HS  Kwon K  Kim SI  Han H  Sohn J  Lee S  Jung HI 《Lab on a chip》2011,11(6):1118-1125
Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 μL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications.  相似文献   

9.
Peripheral blood can provide valuable information on an individual’s immune status. Cell‐based assays typically target leukocytes and their products. Characterization of leukocytes from whole blood requires their separation from the far more numerous red blood cells. 1 Current methods to classify leukocytes, such as recovery on antibody‐coated beads or fluorescence‐activated cell sorting require long sample preparation times and relatively large sample volumes. 2 A simple method that enables the characterization of cells from a small peripheral whole blood sample could overcome limitations of current analytical techniques. We describe the development of a simple graphene oxide surface coated with single‐domain antibody fragments. This format allows quick and efficient capture of distinct WBC subpopulations from small samples (~30 μL) of whole blood in a geometry that does not require any specialized equipment such as cell sorters or microfluidic devices.  相似文献   

10.
Label-free cell separation and sorting in microfluidic systems   总被引:2,自引:0,他引:2  
Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible.  相似文献   

11.
We developed the dual‐micropillar‐based microfluidic platform to direct embryonic stem (ES) cell fate. 4 × 4 dual‐micropillar‐based microfluidic platform consisted of 16 circular‐shaped outer micropillars and 8 saddle‐shaped inner micropillars in which single ES cells were cultured. We hypothesized that dual‐micropillar arrays would play an important role in controlling the shear stress and cell docking. Circular‐shaped outer micropillars minimized the shear stress, whereas saddle‐shaped inner micropillars allowed for docking of individual ES cells. We observed the effect of saddle‐shaped inner micropillars on cell docking in response to hydrodynamic resistance. We also demonstrated that ES cells cultured for 6 days within the dual‐micropillar‐based microfluidic platform differentiated into neural‐like cells. Therefore, this dual‐micropillar‐based microfluidic platform could be a potentially powerful method for screening of lineage commitments of single ES cells.  相似文献   

12.
A novel method for studying unlabeled living mammalian cells based on their autofluorescence (AF) signal in a prototype microfluidic device is presented. When combined, cellular AF detection and microfluidic devices have the potential to facilitate high-throughput analysis of different cell populations. To demonstrate this, unlabeled cultured cells in microfluidic devices were excited with a 488 nm excitation light and the AF emission (> 505 nm) was detected using a confocal fluorescence microscope (CFM). For example, a simple microfluidic three-port glass microstructure was used together with conventional electroosmotic flow (EOF) to switch the direction of the fluid flow. As a means to test the potential of AF-based cell sorting in this microfluidic device, granulocytes were successfully differentiated from human red blood cells (RBCs) based on differences in AF. This study demonstrated the use of a simple microfabricated device to perform high-throughput live cell detection and differentiation without the need for cell-specific fluorescent labeling dyes and thereby reducing the sample preparation time. Hence, the combined use of microfluidic devices and cell AF may have many applications in single-cell analysis.  相似文献   

13.
McFaul SM  Lin BK  Ma H 《Lab on a chip》2012,12(13):2369-2376
The separation of biological cells by filtration through microstructured constrictions is limited by unpredictable variations of the filter hydrodynamic resistance as cells accumulate in the microstructure. Applying a reverse flow to unclog the filter will undo the separation and reduce filter selectivity because of the reversibility of low-Reynolds number flow. We introduce a microfluidic structural ratchet mechanism to separate cells using oscillatory flow. Using model cells and microparticles, we confirmed the ability of this mechanism to sort and separate cells and particles based on size and deformability. We further demonstrate that the spatial distribution of cells after sorting is repeatable and that the separation process is irreversible. This mechanism can be applied generally to separate cells that differ based on size and deformability.  相似文献   

14.
Microfluidic technologies for isolating cells of interest from a heterogeneous sample have attracted great attentions, due to the advantages of less sample consumption, simple operating procedure, and high separation accuracy. According to the working principles, the microfluidic cell sorting techniques can be categorized into biochemical (labeled) and physical (label‐free) methods. However, the inherent drawbacks of each type of method may somehow influence the popularization of these cell sorting techniques. Using the multiple complementary isolation principles is a promising strategy to overcome this problem, therefore there appears to be a continuing trend to integrate two or more sorting methods together. In this review, we focus on the recent advances in microfluidic cell sorting techniques relied on both physical and biochemical principles, with emphasis on the mechanisms of cell separation. The biochemical cell sorting techniques enhanced by physical principles and the physical cell sorting techniques enhanced by biochemical principles, are first introduced. Then, we highlight on‐chip magnetic‐activated cell sorting, on‐chip fluorescence‐activated cell sorting, multi‐step cell sorting and multi‐principle cell sorting techniques, which are based on both physical and biochemical separation mechanisms. Finally, the challenges and future perspectives of the integrated microfluidics for cell sorting are discussed.  相似文献   

15.
包建民  王丹丹  李优鑫 《色谱》2017,35(1):129-137
癌症作为常见病正严重威胁着我国乃至全球居民的健康。循环肿瘤细胞(CTCs)是一类由癌变部位释放并进入血液中的癌细胞,其在癌症的早期诊断、个体化及肿瘤转移机制研究等方面的作用正逐渐被发现和认可,但由于血液中的CTCs含量极少,对其分选极具挑战。微流控芯片作为一种微型化、高通量、集成化平台,在CTCs研究中彰显了独特的优势,相关报道也越来越多。随着研究的深入,微流控芯片技术不再局限于基于模型样品的方法学开发,而是更注重于能否用于临床实际样品中CTCs的检测,但目前未见该角度的综述报道。为此,文章综述了近年来用于临床实际样品CTCs分析的微流控芯片分选技术,并探讨了微流控芯片用于CTCs分选的发展趋势。  相似文献   

16.
We report a contraction-expansion array (CEA) microchannel that allows inertial size separation by a force balance between inertial lift and Dean drag forces in fluid regimes in which inertial fluid effects become significant. An abrupt change of the cross-sectional area of the channel curves fluid streams and produces a similar effect compared to Dean flows in a curved microchannel of constant cross-section, thereby inducing Dean drag forces acting on particles. In addition, the particles are influenced by inertial lift forces throughout the contraction regions. These two forces act in opposite directions each other throughout the CEA microchannel, and their force balancing determines whether the particles cross the channel, following Dean flows. Here we describe the physics and design of the CEA microfluidic device, and demonstrate complete separation of microparticles (polystyrene beads of 4 and 10 μm in diameter) and efficient exchange of the carrier medium while retaining 10 μm beads.  相似文献   

17.
Local interactions between (bio)chemicals and biological interfaces play an important role in fields ranging from surface patterning to cell toxicology. These interactions can be studied using microfluidic systems that operate in the “open space”, that is, without the need for the sealed channels and chambers commonly used in microfluidics. This emerging class of techniques localizes chemical reactions on biological interfaces or specimens without imposing significant “constraints” on samples, such as encapsulation, pre‐processing steps, or the need for scaffolds. They therefore provide new opportunities for handling, analyzing, and interacting with biological samples. The motivation for performing localized chemistry is discussed, as are the requirements imposed on localization techniques. Three classes of microfluidic systems operating in the open space, based on microelectrochemistry, multiphase transport, and hydrodynamic flow confinement of liquids are presented.  相似文献   

18.
Effective methods for rapid sorting of cells according to their viability are critical in T cells based therapies to prevent any risk to patients. In this context, we present a novel microfluidic device that continuously separates viable and non-viable T-cells according to their dielectric properties. A dielectrophoresis (DEP) force is generated by an array of castellated microelectrodes embedded into a microfluidic channel with a single inlet and two outlets; cells subjected to positive DEP forces are drawn toward the electrodes array and leave from the top outlet, those subjected to negative DEP forces are repelled away from the electrodes and leave from the bottom outlet. Computational fluid dynamics is used to predict the device separation efficacy, according to the applied alternative current (AC) frequency, at which the cells move from/to a negative/positive DEP region and the ionic strength of the suspension medium. The model is used to support the design of the operational conditions, confirming a separation efficiency, in terms of purity, of 96% under an applied AC frequency of 1.5 × 10Hz and a flow rate of 20 μl/h. This work represents the first example of effective continuous sorting of viable and non-viable human T-cells in a single-inlet microfluidic chip, paving the way for lab-on-a-chip applications at the point of need.  相似文献   

19.
Circulating tumor cells (CTCs) present in the bloodstream are strongly linked to the invasive behavior of cancer; therefore, their detection holds great significance for monitoring disease progression. Currently available CTC isolation tools are often based on tumor-specific antigen or cell size approaches. However, these techniques are limited due to the lack of a unique and universal marker for CTCs, and the overlapping size between CTCs and regular blood cells. Dielectrophoresis (DEP), governed by the intrinsic dielectric properties of the particles, is a promising marker-free, accurate, fast, and low-cost technique that enables the isolation of CTCs from blood cells. This study presents a continuous flow, antibody-free DEP-based microfluidic device to concentrate MCF7 breast cancer cells, a well-established CTC model, in the presence of leukocytes extracted from human blood samples. The enrichment strategy was determined according to the DEP responses of the corresponding cells, obtained in our previously reported DEP spectrum study. It was based on the positive-DEP integrated with hydrodynamic focusing under continuous flow. In the proposed device, the parylene microchannel with two inlets and outlets was built on top of rectangular and equally spaced isolated planar electrodes rotated certain degree relative to the main flow (13°). The recovery of MCF7 cells mixed with leukocytes was 74%–98% at a frequency of 1 MHz and a magnitude of 10–12 Vpp. Overall, the results revealed that the presented system successfully concentrates MCF7 cancer cells from leukocytes, ultimately verifying our DEP spectrum study, in which the enrichment frequency and separation strategy of the microfluidic system were determined.  相似文献   

20.
This work presents a microfluidic device, which was patterned with (i) microstructures for hydrodynamic capture of single particles and cells, and (ii) multiplexing microelectrodes for selective release via negative dielectrophoretic (nDEP) forces and electrical impedance measurements of immobilized samples. Computational fluid dynamics (CFD) simulations were performed to investigate the fluidic profiles within the microchannels during the hydrodynamic capture of particles and evaluate the performance of single‐cell immobilization. Results showed uniform distributions of velocities and pressure differences across all eight trapping sites. The hydrodynamic net force and the nDEP force acting on a 6 μm sphere were calculated in a 3D model. Polystyrene beads with difference diameters (6, 8, and 10 μm) and budding yeast cells were employed to verify multiple functions of the microfluidic device, including reliable capture and selective nDEP‐release of particles or cells and sensitive electrical impedance measurements of immobilized samples. The size of immobilized beads and the number of captured yeast cells can be discriminated by analyzing impedance signals at 1 MHz. Results also demonstrated that yeast cells can be immobilized at single‐cell resolution by combining the hydrodynamic capture with impedance measurements and nDEP‐release of unwanted samples. Therefore, the microfluidic device integrated with multiplexing microelectrodes potentially offers a versatile, reliable, and precise platform for single‐cell analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号