首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have experimentally observed anomalous spreading of aqueous alcohol solutions on flat and rough fractal agar gel surfaces. On flat agar gel surfaces, extremely fast spreading [θ(D)(t) ∝ t(-0.92)] that differs from Tanner's law [θ(D)(t) ∝ t(-0.3)] was observed when the liquid contained over 9 wt % of 1-propanol in which strong Marangoni flow was observed as a fluctuation on the liquid surface. However, on fractal gel surfaces, different spreading dynamics [θ(D)(t) ∝ t(-0.58)] were observed, although Marangoni flow still occurred. We found the surface-dependent spreading can be discussed in terms of competition between Marangoni flow and the pinning effect due to surface roughness.  相似文献   

2.
The adsorption of proteins at material surfaces is important in applications such as biomaterials, drug delivery, and diagnostics. The interaction of cells with artificial surfaces is mediated through adsorbed proteins, where the type of protein, amount, orientation, and conformation are of consequence for the cell response. Laminin, an important cell adhesive protein that is central in developmental biology, is studied by a combination of quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance (SPR) to characterize the adsorption of laminin on surfaces of different surface chemistries. The combination of these two techniques allows for the determination of the thickness and effective density of the protein layer as well as the adsorbed mass and viscoelastic properties. We also evaluate the capacity of QCM-D to be used as a quantitative technique on a nanostructured surface, where protein is adsorbed specifically in a nanopattern exploiting PLL-g-PEG as a protein-resistant background. We show that laminin forms a highly hydrated protein layer with different characteristics depending on the underlying substrate. Using a combination of QCM-D and atomic force microscopy (AFM) data from nanostructured surfaces, we model laminin and antibody binding to nanometer-scale patches. A higher amount of laminin was found to adsorb in a thicker layer of a lower effective density in nanopatches compared to equivalent homogeneous surfaces. These results suggest that modeling of QCM-D data of soft viscoelastic layers arranged in nanopatterns may be applied where an independent measure of the "dry" mass is known.  相似文献   

3.
The adhesion process of osteoblast-like cells on hydroxyapatite (HAp) and oxidized polystyrene (PSox) was investigated using a quartz crystal microbalance with dissipation (QCM-D), confocal laser scanning microscope (CLSM), and atomic force microscope (AFM) techniques in order to clarify the interfacial phenomena between the surfaces and cells. The interfacial viscoelastic properties (shear viscosity (η(ad)), elastic shear modulus (μ(ad)), and tan δ) of the preadsorbed protein layer and the interface layer between the surfaces and cells were estimated using a Voigt-based viscoelastic model from the measured frequency (Δf) and dissipation shift (ΔD) curves. In the ΔD-Δf plots, the cell adhesion process on HAp was classified as (1) a mass increase only, (2) increases in both mass and ΔD, and (3) slight decreases in mass and ΔD. On PSox, only ΔD increases were observed, indicating that the adhesion behavior depended on the surface properties. The interfacial μ(ad) value between the material surfaces and cells increased with the number of adherent cells, whereas η(ad) and tanδ decreased slightly, irrespective of the surface. Thus, the interfacial layer changed the elasticity to viscosity with an increase in the number. The tan δ values on HAp were higher than those on PSox and exceeded 1.0. Furthermore, the pseudopod-like structures of the cells on HAp had periodic stripe patterns stained with a type I collagen antibody, whereas those on PSox had cell-membrane-like structures unstained with type I collagen. These results indicate that the interfacial layers on PSox and HAp exhibit elasticity and viscosity, respectively, indicating that the rearrangements of the extracellular matrix and cytoskeleton changes cause different cell-surface interactions. Therefore, the different cell adhesion process, interfacial viscoelasticity, and morphology depending on the surfaces were successfully monitored in situ and evaluated by the QCM-D technique combined with other techniques.  相似文献   

4.
The thermal Marangoni instability of a fluid film coating a deformable membrane has been investigated by taking into account the deformation of the fluid free surface. Numerical calculations for different thermal boundary conditions are presented. The prestressed membrane is supposed to be very thin and therefore its behavior is similar to that of an isothermal fluid free surface with a surface tension but with a different mechanical boundary condition; that is, the fluid should stick on its surface and thus the fluid velocity is zero. An important assumption is that the membrane has no temperature dependence and therefore that only one Marangoni number exists for the free surface of the fluid. Numerical results are presented for stationary and oscillatory thermocapillary instability in both the sinuous and the varicose modes. It is shown that membrane deformation has important implications on the Marangoni instability of the fluid layer for positive and negative Marangoni numbers. Copyright 2001 Academic Press.  相似文献   

5.
The adsorption of human fibrinogen on tantalum oxide, titanium oxide and gold surfaces has been studied by quartz crystal microbalance with dissipation (QCM-D) at 37 degrees C. Two different protein concentrations have been used, one close to physiological concentration (1 mg/ml) and one significantly lower (0.033 mg/ml). To further characterize the adsorbed fibrinogen layer, the subsequent binding of both polyclonal and monoclonal antibodies of fibrinogen is studied. We found that the viscoelastic properties of the fibrinogen layer depends strongly on the initial protein concentration. The trend is generally seen for all three surfaces. The fibrinogen layer on gold and tantalum oxide is found to have the same viscoelastic properties, which are different from those found for the fibrinogen layer adsorbed on titanium oxide. The dependency of the surface chemistry on the viscoelastic properties of the fibrinogen layer is observed directly for the 0.033 mg/ml solution, and indirectly through the antibody response for the 1 mg/ml solution. From this we conclude that the orientation and/or denaturation of fibrinogen on a surface depends on the surface chemistry and the protein concentration in the solution, and that the binding of antibodies is a useful way to detect this difference.  相似文献   

6.
The development of solutocapillary flows at the surfaces of air bubbles and chlorobenzene droplets was experimentally studied in nonuniform aqueous solutions of ethanol and isopropanol, which have a low surface tension and, hence, exhibit surface-active properties with respect to water. The experiments demonstrated the retardation of the onset of the development of the Marangoni concentration-induced convection relative to the moment of the contact between an inflowing surfactant (alcohol) and the surface. The critical concentration gradients (the Marangoni diffusion numbers) necessary for the initiation of mass transfer of a liquid along the interface were determined as dependent on the rate of inflow of a tongue of a more concentrated solution and the initial alcohol concentration around the bubble.  相似文献   

7.
Oil droplets containing surfactants and pesticides are expected to spread on a water surface, under the Marangoni effect, depending on the surfactant. Pesticides are transported into water through this phenomenon. A high-speed video camera was used to measure the movement of Marangoni ridges. Gas chromatography with an electron capture detector was used to analyze the concentration of the pesticide in water at different times. Oil droplets containing the surfactant and pesticide spread quickly on the water surface by Marangoni flow, forming an oil film and promoting emulsification of the oil–water interface, which enabled even transport of the pesticide into water, where it was then absorbed by weeds. Surfactants can decrease the surface tension of the water subphase after deposition, thereby enhancing the Marangoni effect in pesticide-containing oil droplets. The time and labor required for applying pesticides in rice fields can be greatly reduced by using the Marangoni effect to transport pesticides to the target.  相似文献   

8.
The effects of soluble surfactant on the dynamic rupture of thin liquid films are investigated. A nonlinear coupling evolution equation is used to simulate the motion of thin liquid films on free surfaces. A generalized Frumkin model is adopted to simulate the adsorption/desorption kinetics of the soluble surfactant between the surface and the bulk phases. Numerical simulation results show that the liquid film system with soluble surfactant is more unstable than that with insoluble surfactant. Moreover, a generalized Frumkin model is substituted for the Langmuir model to predict the instability of liquid film with soluble surfactant. A numerical calculation using the generalized Frumkin model shows that the surfactant solubility increases as the values of parameters of absorption/desorption rate constant (J), activation energy desorption (nu(d)), and bulk diffusion constant (D(1)) increase, which consequently causes the film system to become unstable. The surfactant solubility decreases as the rate of equilibrium (lambda) and interaction among molecules (K) are increased, which therefore stabilizes the film system. On the other hand, an increase of relative surface concentration (the index of a power law), beta(n), will initially result in a decrease of corresponding shear drag force as beta and n increase from 0 to 0.3 and 0.85, respectively. This will enhance the Marangoni effect. However, a further increase of beta and n to greater than 0.3 and 0.85, respectively, will conversely result in an increase of the corresponding shear drag force. This will weaken the Marangoni effect and thus result in a reduction of interfacial stability. Copyright 2000 Academic Press.  相似文献   

9.
This study investigates the viscoelastic effects on droplet migration induced by a wettability gradient on a rigid substrate by a numerical simulation based on OpenFOAM with the volume‐of‐fluid method. The droplets are set with different rheological properties to investigate the effect of the elastic parameters. The Oldroyd‐B model was employed. Quantitative differences in the migration and deformation between Newtonian and viscoelastic droplets were investigated by changing the degree of elasticity. The droplet migration shows conspicuously higher mobility for high elasticity, especially during the accelerating period. Moreover, the displacement and velocity increased with the decrease of a viscoelasticity parameter, and the velocity enhancement was regulated by the elastic instability shown at a high Weissenberg number. In addition, the velocity of the droplet changes more significantly over the range of contact angles of 130° to 60° compared to other wettability‐gradient surfaces.  相似文献   

10.
In the early days of electronic communication-as a result of the limited number of quartz resonators available-frequency adjustment was accomplished by a pencil mark depositing a foreign mass layer on the crystal. In 1959, Sauerbrey showed that the shift in resonance frequency of thickness-shear-mode resonators is proportional to the deposited mass. This was the starting point for the development of a new generation of piezoelectric mass-sensitive devices. However, it was the development of new powerful oscillator circuits that were capable of operating thickness shear mode resonators in fluids that enabled this technique to be introduced into bioanalytic applications. In the last decade adsorption of biomolecules on functionalized surfaces turned in to one of the paramount applications of piezoelectric transducers. These applications include the study of the interaction of DNA and RNA with complementary strands, specific recognition of protein ligands by immobilized receptors, the detection of virus capsids, bacteria, mammalian cells, and last but not least the development of complete immunosensors. Piezoelectric transducers allow a label-free detection of molecules; they are more than mere mass sensors since the sensor response is also influenced by interfacial phenomena, viscoelastic properties of the adhered biomaterial, surface charges of adsorbed molecules, and surface roughness. These new insights have recently been used to investigate the adhesion of cells, liposomes, and proteins onto surfaces, thus allowing the determination of the morphological changes of cells as a response to pharmacological substances and changes in the water content of biopolymers without employing labor-intense techniques. However, the future will show whether the quartz-crystal microbalance will assert itself against established label-free sensor devices such as surface plasmon resonance spectroscopy and interferometry.  相似文献   

11.
DHA-induced changes of supported lipid membrane morphology   总被引:1,自引:0,他引:1  
Docosahexaenoic acid (DHA) is a polyunsaturated long fatty acid known to have fundamental effects on cell membrane function. Here, the effect of DHA on phosphocholine-supported lipid bilayers was measured using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique. Above a concentration of 60 muM (i.e., near the critical micelle concentration), DHA had drastic effects on the viscoelastic properties of the supported membranes, suggesting a more complex process and structure than simple insertion of molecules in the bilayer. Fluorescence microscopy revealed the spontaneous formation of elongated out-growths from the bilayers, which were remarkable for their length ( approximately 100 mum) and extensive coverage of the surface. These results demonstrate the applicability of QCM-D as a method to screen for conditions where membrane remodeling occurs but also that complementary techniques are required to describe in more detail the changes in viscoelastic properties of the membrane. These results are highly relevant for the present rapid development in the field of model lipid membranes aiming toward increased knowledge about processes occurring at biological surfaces.  相似文献   

12.
Adsorption of phospholipid vesicles on titanium dioxide was studied by a combination of quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy techniques. Vesicle size, concentration in solution, and bilayer composition were systematically varied. A strong dependence of the QCM-D response (magnitude of the frequency and dissipation factor shifts) on the vesicle concentration in solution was observed. QCM-D data were compared with a linear viscoelastic model based on the Voight element to determine layer thickness, density, elastic modulus, and viscosity. Based on the results of this comparison, it is proposed that (i) layer thickness and density, as sensed by QCM-D, saturate much earlier (in time) than the actual surface coverage of the vesicles (number of vesicles per unit area); (ii) changes in surface coverage that occur after the density and thickness, as sensed by QCM-D, have saturated, are interpreted by the model as changes in the layer's viscoelastic properties. This is caused by the replacement of the viscous media (water) between the vesicles by viscoelastic media of similar density (vesicles); (iii) viscoelastic properties of layers formed at different vesicle concentrations differ significantly, while the vesicle surface coverage in those layers does not. Based on the comparison between the atomic force microscopy images and QCM-D data acquired at various vesicle concentrations it is proposed that QCM-D response is not directly related to the surface coverage of the vesicles.  相似文献   

13.
A macroscopic theory for the dynamics of compressible nematic polymer‐viscous fluid interfaces is developed from first principles. The theory is used to define and characterize the basic interfacial viscoelastic material properties of the ordered interfaces. The theory is based on a decomposition of the kinematic fields and nematic tensor order parameter that takes into account the symmetry breaking of the interface. The interfacial rate of entropy production used to identify the interfacial viscoelastic modes is given in terms of surface rate of deformation tensor and the surface Jaumann derivative of the tangential component nematic tensor order parameter. The derived surface viscous stress tensor is asymmetric and thus describes surface flow‐induced changes in the tensor order parameter. Consistency with the Boussinesq surface fluid appropriate for Newtonian interfaces is established. The interfacial material functions are identified as the dynamic surface tension, the interfacial dilational viscosities, and the interfacial shear viscosities. The interfacial material functions depend on the surface tensor order parameter and as a consequence anisotropy is their characteristic feature. Two characteristic interfacial tensions and two dilational viscosities are predicted depending on the director orientation. In addition six interfacial shear viscosities arise as the directors sample the velocity, velocity gradient, and vorticity directions. Finally the theory provides for the necessary theoretical tools needed to describe the interfacial dynamics of nematic polymer interfaces, such as capillary instabilities, Marangoni flows, and wetting phenomena.  相似文献   

14.
《Chemphyschem》2003,4(4):329-333
The physical properties of liquids, such as surface tension, Marangoni convection and surface segregation are important in many technical fields and are of fundamental interest. However, inaccuracy of experiments has prevented us from fully understanding these phenomena. Recent advances in experimental techniques, such as the containerless technique and the utilization of microgravity, are described.  相似文献   

15.
16.
We report quantitative measurements of Marangoni flows generated at the surfaces of aqueous solutions by using water-soluble redox-active surfactants in combination with electrochemical methods. These measurements are interpreted within the framework of a simple model that is based on lubrication theory and the proposition that the kinetics of the desorption of redox-active surfactants from the surfaces of aqueous solutions plays a central role in determining the strength of the Marangoni flow. The model predicts that the leading edge velocity of the Marangoni flow will decay exponentially with time and that the rate constant for the decay of the velocity can yield an estimate of the surfactant desorption rate constant. Good agreement between theory and experiments was found. By interpreting experimental measurements of electrochemically generated Marangoni flows within the framework of the model, we conclude that the desorption rate constant of the redox-active surfactant Fc(CH(2))(11)-N(+)(CH(3))(3)Br(-), where Fc is ferrocene, is 0.07 s(-)(1). We also conclude that the ionic strength of the aqueous solution has little effect on the desorption rate constant of the ferrocenyl surfactant.  相似文献   

17.
Fingering instabilities in films moving along wetted surfaces, dimpling in horizontal liquid films, and the drainage of vertical soap films by marginal regeneration are caused by surface tension gradients along the perimeter of the thin film. These gradients lead to a mechanical instability which involves Marangoni type liquid flow. It is possible to describe the conditions for the onset of marginal regeneration with a critical number of the ratio between the driving force for the Marangoni flow and the friction of film elements that move relative to their surroundings. This ratio is called the Mysels number. A linear stability analysis leads to a scaling relation lambda approximately h(Ca)(-1/3) between the wavelength lambda of the instability and the capillary number Ca (Ca=/etaV(s)/gamma. In experiments with several Marangoni-driven instabilities this scaling relation has been found; it illustrates the general applicability in the understanding of flow phenomena of this type. Copyright 2001 Academic Press.  相似文献   

18.
The surfaces of polyimide films and the structure just below the surfaces have been extensively studied as people have sought to improve and understand the key factors controlling adhesion. Treatments of all types from primers to plasma etching to sand blasting have been evaluated with varying efforts depending on the application. In recent years, the emphasis has been on understanding the chemical and morphological changes effected by these treatments and then correlating chemistry and morphology with adhesion. The picture that emerges is that surface energy alone, as is the case with most polymers, usually is insufficient to predict adhesion to polyimides. Instead, initial bond strength and bond durability, whether with adhesives or metals directly deposited on the film, depend on chemical bonding, diffusion between deposited layers and the polyimide, formation of a micro composite region controlled in part by topography and the viscoelastic properties of the polymer below the surface. Poor viscoelastic behavior frequently is characterized as a weak boundary layer. Recent work has shown that small amounts of organometallics that diffuse to the surface during the film forming process can significantly affect bondability both to adhesives and to vacuum deposited metals. The possible effect of these additives on bond formation, viscoelastic properties, diffusion and topography is under investigation and will be discussed along with an over view of the primary film forming steps that might affect surface chemistry and structure.  相似文献   

19.
Surface roughness is known to easily suppress the adhesion of elastic surfaces. Here, a simple model for the contact of viscoelastic rough surfaces with significant levels of adhesion is presented. This approach is derived from our previous model (Barthel, E.; Haiat, G. Langmuir 2002, 18, 9362) for the adhesive contact of viscoelastic spheres. For simplicity, a simple loading/unloading history (infinitely fast loading and constant pull-out velocity) is assumed. The model provides approximate analytical expressions for the asperity response and exhibits the full viscoelastic adhesive contact phenomenology such as stress relaxation inside the contact zone and creep at the contact edges. Combining this model with a Greenwood-Williamson statistical modeling of rough surfaces, we propose a quantitative assessment of the adhesion to rough viscoelastic surfaces. We show that moderate viscoelasticity efficiently restores adhesion on rough surfaces over a wide dynamic range.  相似文献   

20.
When autocatalytic chemical fronts propagate in thin layers of solution in contact with air, they can induce capillary flows due to surface tension gradients across the front (Marangoni flows). We investigate here such an interplay between autocatalytic reactions, diffusion, and Marangoni effects with a theoretical model coupling the incompressible Navier-Stokes equations to a conservation equation for the autocatalytic product concentration in the absence of gravity and for isothermal conditions. The boundary condition at the open liquid/air interface takes the surface activity of this product into account and introduces the solutal Marangoni number M representing the intensity of the coupling between hydrodynamics and reaction-diffusion processes. Positive and negative Marangoni numbers correspond, respectively, to the cases where the product decreases or increases surface tension behind the front. We show that, in both cases, such coupled systems reach an asymptotic dynamics characterized by a steady fluid vortex traveling at a constant speed with the front and deforming it, with, however, an asymmetry between the results for positive and negative M. A parametric study shows that increased propagation speed, front deformation, and possible transient oscillating dynamics occur when the absolute value of M is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号