首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A basic mobile phase containing a tetraalkylammonium (R4N+) salt was used to enhance the retention of free amino acids (AA) in their anion form on a polystyrene divinylbenzene copolymeric (Hamilton PRP-1) nonpolar stationary phase adsorbent. Major variables, which can be readily manipulated to alter this retention and resolve complex AA mixtures, are: structure and concentration of R4N+ salt, type and amount of organic modifier in the mobile phase solvent, concentration and selectivity of the counteranion present, and mobile phase pH and ionic strength. Mobile phase gradients based on a pH change, or an ionic strength change and their combination, while all other variables are constant, were evaluated for the separation of complex AA mixtures. Detection was accomplished by absorbance or fluorescence after a post-column ortho-phthalaldehyde reaction.  相似文献   

2.
The lipophilicity (RM0) and specific hydrophobic surface area for the representatives of four generation cephalosporins have been determined by reversed‐phase thin‐layer chromatography, and the effect of different mobile‐phase modifiers (such as methanol, acetonitrile, acetone, 1,4‐dioxane and 2‐propanol) on the retention has been studied. The compounds studied showed typical retention behavior; their RM values decreased linearly with increasing concentration of the organic modifier in the eluent. The linear correlations between the volume fraction of the organic solvent and the RM values over a limited range were established for each solute, resulting in high values of correlation coefficients (>0.95 in most cases). RM values were determined by various concentrations of organic modifier, and the correlation obtained was extrapolated to 0% of organic modifier. Chromatographically established logP (RM0) parameters were compared with computationally calculated partition coefficients values (AClogP, ALOGP, KOWWIN, ALOGPs, XLOGP2, MLOGP and XLOGP3) and experimental octanol–water logP values (measured by the shake flask method). The received results demonstrate that RP‐TLC may be a good alternative technique for analytics in describing the lipophilic nature of investigated cephalosporins as well as the activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Liu  Fu-Ken 《Chromatographia》2012,75(19):1099-1105

This paper reports the use of size-exclusion chromatography (SEC) to assess the size stabilization of Au nanoparticles (NPs) in the presence of salt and organic solvent. In the absence of an adequate stabilizer for the Au NP solution, the presence of salt (NaCl) or an organic solvent (MeOH) resulted in the near disappearance of the signal of the Au NPs in the elution spectra after SEC separation, as a result of the Au NPs forming larger agglomerates under such conditions. In contrast, when the Au NPs were capped with an adequate stabilizer [i.e., 3A-amino-3A-deoxy-(2AS,3AS)-β-cyclodextrin (H2N-β-CD)], the elution time of the signal for the Au NPs and their elution spectra after SEC separation were barely affected by the presence of salt or organic solvent. Thus, H2N-β-CD is a good stabilizer against the coagulation of Au NPs in the presence of salt or organic solvent. In addition, this study confirms that SEC—with its short analysis times, low operating costs, automated operation, and in situ analysis—is highly applicable for the rapid analysis of Au NPs.

  相似文献   

4.
共沉淀法制备了Ru-Zn催化剂,考察了反应修饰剂ZnSO4和预处理对苯选择加氢制环己烯Ru-Zn催化剂性能的影响。结果表明,反应修饰剂ZnSO4可以与Ru-Zn催化剂中助剂ZnO反应生成(Zn(OH)23(ZnSO4)(H2O)盐。随反应修饰剂ZnSO4浓度增加,(Zn(OH)23(ZnSO4)(H2O)盐量的逐渐增加,Ru-Zn催化剂活性逐渐降低,环己烯选择性逐渐升高。因为(Zn(OH)23(ZnSO4)(H2O)盐中的Zn2+可以使Ru变为有利环己烯生成的缺电子的Ruδ+物种,而且还可以占据不适宜环己烯生成的强Ru活性位。但当反应修饰剂ZnSO4浓度高于0.41 mol·L-1后,继续增加ZnSO4浓度,由于Zn2+水解浆液酸性太强,可以溶解部分(Zn(OH)23(ZnSO4)(H2O)盐,Ru-Zn催化剂活性升高,环己烯选择性降低。但环己烯选择性却略微降低,这是由于ZnSO4溶液中大量的Zn2+可以与生成的环己烯形成配合物,稳定生成的环己烯,抑制生成的环己烯再吸附到催化剂表面并加氢生成环己烷。在ZnSO4最佳浓度0.61 mol·L-1下对Ru-Zn催化剂预处理15 h,Ru-Zn催化剂中助剂ZnO可以与ZnSO4完全反应生成(Zn(OH)23(ZnSO4)(H2O)盐,在该催化剂上25 min苯转化68.2%时环己烯选择性和收率分别为80.2%和54.7%。而且该催化剂具有良好的稳定性和重复使用性能。  相似文献   

5.
共沉淀法制备了Ru-Zn催化剂,考察了反应修饰剂ZnSO_4和预处理对苯选择加氢制环己烯Ru-Zn催化剂性能的影响。结果表明,反应修饰剂ZnSO_4可以与Ru-Zn催化剂中助剂Zn O反应生成(Zn(OH)2)3(ZnSO_4)(H_2O)盐。随反应修饰剂ZnSO_4浓度增加,(Zn(OH)2)3(ZnSO_4)(H_2O)盐量逐渐增加,Ru-Zn催化剂活性逐渐降低,环己烯选择性逐渐升高。因为(Zn(OH)2)3(ZnSO_4)(H_2O)盐中的Zn2+可以使Ru变为有利环己烯生成的缺电子的Ruδ+物种,而且还可以占据不适宜环己烯生成的强Ru活性位。但当反应修饰剂ZnSO_4浓度高于0.41 mol·L-1后,继续增加ZnSO_4浓度,由于Zn2+水解浆液酸性太强,可以溶解部分(Zn(OH)2)3(ZnSO_4)(H_2O)盐,RuZn催化剂活性升高,环己烯选择性降低。环己烯选择性略微降低,是由于ZnSO_4溶液中大量的Zn2+可以与生成的环己烯形成配合物,稳定生成的环己烯,抑制环己烯再吸附到催化剂表面并加氢生成环己烷。在ZnSO_4最佳浓度0.61 mol·L-1下对Ru-Zn催化剂预处理15 h,Ru-Zn催化剂中助剂Zn O可以与ZnSO_4完全反应生成(Zn(OH)2)3(ZnSO_4)(H_2O)盐,在该催化剂上25 min苯转化68.2%时环己烯选择性和收率分别为80.2%和54.7%。而且该催化剂具有良好的稳定性和重复使用性能。  相似文献   

6.
Dispersive liquid–liquid microextraction (DLLME) and hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) combined with HPLC–DAD have been applied for the determination of three narcotic drugs (alfentanil, fentanyl, and sufentanil) in biological samples (human plasma and urine). Different DLLME parameters influencing the extraction efficiency such as type and volume of the extraction solvent and the disperser solvent, concentration of NaOH, and salt addition were investigated. In the HF-LLLME, the effects of important parameters including organic solvent type, concentration of NaOH as donor solution, concentration of H2SO4 as acceptor phase, salt addition, stirring rate, temperature, and extraction time were investigated and optimized. The results showed that both extraction methods exhibited good linearity, precision, enrichment factor, and detection limit. Under optimal condition, the limits of detection ranged from 0.4 to 1.9 μg/L and from 1.1 to 2.3 μg/L for DLLME and HF-LLLME, respectively. For DLLME, the intra- and inter-day precisions were 1.7–6.4% and 14.2–15.9%, respectively; and for HF-LLLME were 0.7–5.2% and 3.3–10.1%, respectively. The enrichment factors were from 275 to 325 and 190 to 237 for DLLME and HF-LLLME, respectively. The applicability of the proposed methods was investigated by analyzing biological samples. For analysis of human plasma and urine samples, HF-LLLME showed higher precision, more effective sample clean-up, higher extraction efficiency, lower organic solvent consumption than DLLME.  相似文献   

7.
Abstract

Fractionation of amino acid specific tRNAs by descending salt gradient on a reversed-phase high-performance liquid chromatography column is demonstrated. Stationary phase variables such as n-alkyl chain length and silica type are discussed in terms of stability and selectivity. Mobile phase parameters including salt concentration, organic modifier, pH, and temperature are investigated. The concentration of organic modifier to adjust elution profiles can be critical in terms of tRNA retention.  相似文献   

8.
Small organic acids have shown significant retention on various stationary phases, such as amide, amino, aspartamide, silica and sulfobetaine phase commonly used in hydrophilic interaction chromatography (HILIC). This study investigated the effect of chromatographic conditions on the retention behavior of organic acids in HILIC using the tool of design of experiment (DOE). The results of the DOE study indicated that both the content of organic solvent (i.e., acetonitrile) and salt concentration in the mobile phase had significant effects on the retention of organic acids. Higher content of organic solvent in the mobile phase led to a significant increase in retention on all types of stationary phases. Increasing salt concentration also resulted in a moderate increase in retention; however, the effect of salt concentration varied with the type of stationary phase. The study also revealed that column temperature had less impact on retention than organic solvent content and salt concentration in HILIC.  相似文献   

9.
Some poly(vinylidene fluoride) (PVdF) microporous separators for lithium‐ion batteries, used in liquid organic electrolytes based on a mixture of carbonate solvents and lithium salt LiPF6, were characterized by the study of the swelling phenomena on dense PVdF membranes. We were interested in the evolution of the swelling ratios with respect to different parameters, such as the temperature, swelling solution composition, and salt concentration. To understand PVdF behavior in microporous membranes and, therefore, to have a means of predicting its behavior with different solvent mixtures, we correlated the swelling ratios in pure solvents and in solvent mixtures to the solvent–polymer interaction parameters and solvent–solvent interaction parameters. We attempted a parametric identification of swelling curves with a very simple Flory–Huggins model with relative success. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 532–543, 2004  相似文献   

10.
N235萃取HCl体系中TBP消除第三相的作用机理   总被引:2,自引:2,他引:2  
通过测定萃取有机相的电导率变化研究叔胺N235(三烷基胺)萃取盐酸体系中第三相的形成及改性剂消除第三相的作用机理。实验结果表明,无改性剂时萃取体系在各种条件下均出现第三相。第三相组成为R3NH+(H2O)3·Cl-,具有导电性。加改性剂TBP(磷酸三丁酯)后,第三相消失。本文认为改性剂TBP消除第三相的作用机理是TBP能够将萃合物R3NH+(H2O)3·Cl-拆分为可溶于惰性稀释剂的R3NH+(H2O)3·O=P(OC4H9)3大阳离子,Cl-离子则以抗衡离子分散于稀释剂中。  相似文献   

11.
The polymer/solvent/nonsolvent systems with different L-L demixing rates were prepared by employing a binary solvent mixture consisting of two solvents - one exhibits an instantaneous liquid-liquid (L-L) demixing process, while the other exhibits a delayed L-L demixing process. It was found that an increase in the delay time of L-L demixing results in a denser membrane structure, an increase in fiber mechanical strength, a delay desorption of moisture in membrane, and a decrease in gas permeance, for a hollow fiber fabrication system consisting of cellulose acetate (CA) (polymer), N-methyl-pyrrolidone (NMP) (solvent having an instantaneous L-L demixing property), tetrahydrofuran (THF) (solvent having a delayed L-L demixing property) and water (nonsolvent). Hollow fibers prepared under an instantaneous L-L demixing process tends to have more mechanically weak points (flaws) than those prepared under a delayed L-L demixing process. Surprisingly, SEM observation suggests that membranes wet-spun from solutions containing both THF and NMP tend to have a rough outer skin morphology. Inconsistent demixing and the collapse of the outer nascent skin may be the main causes. In addition, the effect of bore fluid chemistry on fiber performance is much more pronounced for systems having a delayed L-L demixing mechanism than that having an instantaneous L-L demixing.  相似文献   

12.
The 5-nonylsalicylaldoxime or 2-hydroxy-5-nonylbenzaldoxime namely aldoxime is a strong copper extractor that is mainly used in the process of copper solvent extractions. In order to characterize the aldoxime production process and to obtain a pure substance for using in the subsequent investigations, this reagent was synthesized and instrumental analysis such as FT-IR, 1H-NMR, and GC/MS spectra were first taken on the final product. The effects of various modifying reagents were studied on the synthesized aldoxime for improving its extracting and striping properties in the Cu (II) extraction processes. An optimum formulation of organic phase including the aldoxime and some modifier reagents was determined based on the variation of type and the concentration of the modifiers. The obtained experimental data show that the net copper transferring in a mixture of the aldoxime and modifier mainly the aliphatic alcohols (C12 (40 % w/w) and C14 (60 % w/w)) is greater than the aldoxime alone and greater than its other mixture.  相似文献   

13.
The ion-exchange rate limitation on the kinetics of the series substitution reactions between hexachlorocyclotriphosphazene (NPCl2)3 and 2,2,2-trifluoroethanol (HOCH2CF3) by polystyrene-bound tri-n-butylammonium ion in an organic solvent/alkaline solution was studied. It was found that the diffusional limitation involves both ion diffusion and organic reactant diffusion within the catalyst pellet. The displacement reaction rate of (NPCl2)3 in the organic phase was limited by the particle diffusion and the intrinsic reactivity together. The film diffusion in the bulk solution limited the rate of ion exchange. The mass transport of the ion-exchange step in the aqueous phase was not improved by increasing the concentration of NaOCH2CF3. Drastic kinetic rate improvement was achieved with proper adjustment of the volume of the aqueous solution which was a low concentration of salt in the aqueous phase.  相似文献   

14.
Abstract

Alkylsulfonate (RSO3 ?) salts were evaluated as mobile phase additives for the separation of free amino acids on reverse stationary phases using an acidic mobile phase where the amino acids are cations. The enhanced amino acid retention is the result of two major interactions, one being retention of the RSO3 ? salt on the stationary phase and the other an ion exchange selectivity between the amino acid analyte cation and the RSO3 ? countercation, or other countercations in the mobile phase. Major mobile phase variables are: type and concentration of RSO3 ? salt (the studies focused on C8SO3 ? salts), presence of organic modifier, type of countercation present, and mobile phase pH and ionic strength. Alkyl modified silica and polystyrenedivinyl-benzene copolymeric reverse stationary phases were compared. A mobile phase gradient, increasing per cent organic modifier was shown to be best, is necessary for separating complex mixtures of polar and nonpolar or basic amino acids. The procedure is applicable to the identification and/or determination of amino acids in mixtures or in peptides after hydrolysis.  相似文献   

15.
《Tetrahedron》1988,44(12):3513-3522
The ET (30) polarity values of alcoholic salt solutions were determined for twenty salt/solvent combinations. In all cases equation [2] correlates accurately the medium polarity with the salt concentration. The meaning of this equation is discussed in terms of possible interactions in solution. The dye (1) is shown to be a useful probe for the cationic environment of salts in solution.  相似文献   

16.
A range of organic solvents (ethanol, isopropanol and acetone) has been investigated as alternatives to acetonitrile and methanol when used in conjunction with Corona Charged Aerosol Detection (Corona CAD). These solvents have been evaluated with regard to their effect on the response of the Corona CAD. Three dimensional response surfaces were constructed using raw data showing the relationship between detector response, analyte concentration and percentage of organic solvent in the mobile phase, using sucralose or quinine as the test analyte. The detector response was non-linear in terms of analyte concentration for all solvents tested. However, detector response varied in an approximately linear manner with percentage of organic solvent over the range 0–40% for ethanol or isopropanol and 0–80% for acetone and methanol. The chromatographic performance of the various solvents when used as aqueous–organic mobile phases was evaluated for isocratic and gradient separations of sugars and sugar alcohols by hydrophilic interaction liquid chromatography (HILIC) using an Asahipak NH2P-504E column coupled with Corona CAD detection. It was found that whilst acetonitrile provided the highest column efficiencies and lowest detection limits of the solvents studied, acetone also performed well and could be used to resolve the same number of analytes as was possible with acetonitrile. Typical efficiencies and detection limits of 5330 plates m−1 and 1.25 μg mL−1, respectively, were achieved when acetone was used as the organic modifier. Acetone was utilised successfully as an organic modifier in the HILIC separation of carbohydrates in a beer sample and also for a partially digested dextran sample.  相似文献   

17.
Abstract

An extensive study of the HPLC separation of 20 free amino acids by the addition of alkanesulfonate salts to the mobile phase was previously reported (1). This paper describes modifications in the procedure that improves the separation and resolution of the 20 free amino acids. Mobile phase variables (type and concentration of alkanesulfonate salt, organic modifier concentration, mobile phase pH, and mobile phase ionic strength), and stationary phase variables (particle size, type of packing) which can affect amino acid separation, resolution and selectivity were studied. Two stationary phases were compared, the 5 μm Hamilton PRP-1 and Phase Separations 3 μm, ODS-2. Longer chain alkanesulfonate salts (octane and decanesulfonate salts) were evaluated as mobile phase additives. A mobile phase gradient of increasing per cent organic modifier was necessary for separating complex mixtures of polar and nonpolar-basic amino acids. It is now possible to separate 19 of 20 free amino acids with this ion-interaction chromatographic procedure.  相似文献   

18.
Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N‐dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free‐volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent‐casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X‐ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho‐positronium lifetime (τ3), a measure of the free‐volume size, as well as the fractional free volume (fv) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I2), an index of the epoxy–clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age‐momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy–clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers.  相似文献   

19.
A novel flue gas desulphurisation (FGD) technology using an organic solvent, dimethyl sulphoxide, has been studied. Process parameters studied included solvent concentration, temperature, flow rate and their role in the removal of SO2 from flue gas. The mechanism of FGD by the organic solvent method is discussed and should be of assistance in the industrial removal of SO2 from flue gas.  相似文献   

20.
The possibilities, advantages, shortcomings, and prospects of using supercritical fluids for separating and extracting metal complexes with organic reagents are considered. The theoretical bases of supercritical fluid chromatography and factors influencing the separation of metal complexes (nature of the organic reagent, solubility of reagents and complexes in a supercritical fluid, type of column, motionless phase, addition of a modifier into the mobile phase, and the test solvent) are discussed. The processes occurring in complexes during chromatography are discussed. The bases of supercritical fluid extraction and factors influencing extraction of metals (nature and solubility in a supercritical fluid of an organic reagent and complexes; concentration and ways of introducing the reagent into the system; addition of the modifier, water, and surfactants; the collector; and the matrix) are considered. The possibilities of methods for determining metals in various objects are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号