首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the surface tension driven leveling of surface irregularities in viscoelastic films deposited on a flat surface. Analytical results are presented for the generalized Maxwell model in the limit of infinitesimal surface disturbances. The results show that elasticity retards the leveling process. In some cases, the retardation effect is dramatic. Keunings' finite element algorithm for solving viscoelastic moving boundary problems is used to analyze the case of finite-amplitude surface disturbances. Results for an Oldroyd B fluid display significant elastic effects which are consistent with the asymptotic predictions.  相似文献   

2.
Small amplitude surface tension driven oscillations of a spherical bubble in a dilute polymer solution are considered. The rheological properties of the liquid are modelled by using a 3-constant constitutive equation of the Oldroyd type. The Laplace transform of the solution of the initial value problem is inverted numerically. As in the Newtonian fluid case, both a discrete and a continuous spectrum occurs. In addition to the non-dimensional parameters in the corresponding problem for a Newtonian fluid, the results depend on two other parameters: the ratio of the relaxation time of the polymer solution and the time scale of the flow (the Deborah number) and the product of the polymer concentration and the intrinsic viscosity. For small bubbles in an aqueous solution having a small relaxation time, significant additional damping is found even for dilute solutions.  相似文献   

3.
4.
Based on viscoelastic Kelvin model and nonlocal relationship of strain and stress, a nonlocal constitutive relationship of viscoelasticity is obtained and the strain response of a bar in tension is studied. By transforming governing equation of the strain analysis into Volterra integration form and by choosing a symmetric exponential form of kernel function and adapting Neumann series, the closed-form solution of strain field of the bar is obtained. The creep process of the bar is presented. When time approaches infinite, the strain of bar is equal to the one of nonlocal elasticity.  相似文献   

5.
The spread of a thin oil film by surface tension gradients from an oil source of unlimited mass on deep water is considered. A similarity solution for the velocity fields of the oil and water, the oil thickness and the rate at which each grow is obtained both for axisymmetric and the previously explored planar spreading. The dimensionless size of the spread, which is oil type independent, is shown to be 1.0754 and 1.4150 for axisymmetric and planar spreading respectively. It is further shown that the oil film equation of state, which relates surface tension to oil thickness, is unique to each oil or oil-surfactant mixture.  相似文献   

6.
Based on viscoelastic Kelvin.model and:nonlocal relationship of strain and stress, a nonlocal constitutive relationshila of viscoelasticity is obtained and the strain response of a bar in tension is studied, By transforming governing equation of the strain analysis into Volterra integration form and by choosing a symmetric exponential form of kernel function and adapting Neumann series, the closed-form s.olution of strain field of the bar is obtained.: The creep process of the bar is presented: When time approaches infinite, the strain of bar is equal to the one of nonlocal elasticity  相似文献   

7.
8.
The tension force of a thinning high-molecular polymer solution filament is measured using the filament itself as a force sensor. The axial filament stresses and the effects of fluid flow from the filament into adjacent drops are estimated. It is shown that these effects are insignificant for polymer solutions in a low-viscosity solvent (water) but substantial for solutions in a high-viscosity fluid (glycerine). A modification of the standard rheological capillary filament method is proposed. This modification makes it possible to exclude any hypotheses concerning the stress distribution pattern within the filament. Periodic transverse oscillations of the filament axis are revealed and analyzed.  相似文献   

9.
The standard fourth-order non-linear PDE modelling the flow of thin fluid film subject to surface tension is studied. The Lie group method is used to reduce the model equation from a fourth-order PDE to a fourth-order ODE. Analytical solutions are obtained for certain cases. Where analytical progress cannot be made, we determine numerical solutions.  相似文献   

10.
作为空间自然对流热质输运的基本形式,界面张力梯度驱动对流是流动和传热强耦合的复杂非线性过程,也是一个多控制参数耦合作用的过程,表现出丰富的流动时空特征.界面张力梯度驱动对流是微重力流体物理的重要研究内容和学科前沿,同时在空间燃料输运过程和空间能源或热管利用等空间流体管理问题中均有重要应用.本文综述了界面张力梯度驱动对流...  相似文献   

11.
Nonlinear vibration analysis of viscoelastic cable with small sag   总被引:3,自引:0,他引:3  
Both the inplane and out-of-plane transverse vibrations of a viscoelastic cable subjected to an initial stress distributing uniform on the cross section are studied. The constitution of the cable material is assumed to be of the hereditary integral type. The partial differential-integral equations of motion are derived first. Then by applying Galerkin's method, the governing equations are reduced to a set of second-order nonlinear differential-integral equations which are solved by finite difference numerical integration procedures. Finally, the effects of the viscosity parameter and the elastic parameter on the transient amplitudes of the first mode are investigated by numerical simulation. Project supported by the National Natural Science Foundation of China (No. 59635140) and the National Postdoctoral Foundation of China.  相似文献   

12.
We present a numerical model for predicting the instability and breakup of viscous microjets of Newtonian fluid. We adopt a one‐dimensional slender‐jet approximation and obtain the equations of motion in the form of a pair of coupled nonlinear partial differential equations (PDEs). We solve these equations using the method of lines, wherein the PDEs are transformed to a system of ordinary differential equations for the nodal values of the jet variables on a uniform staggered grid. We use the model to predict the instability and satellite formation in infinite microthreads of fluid and continuous microjets that emanate from an orifice. For the microthread analysis, we take into account arbitrary initial perturbations of the free‐surface and jet velocity, as well as Marangoni instability that is due to an arbitrary variation in the surface tension. For the continuous nozzle‐driven jet analysis, we take into account arbitrary time‐dependent perturbations of the free‐surface, velocity and/or surface tension as boundary conditions at the nozzle orifice. We validate the model using established computational data, as well as axisymmetric, volume of fluid (VOF) computational fluid dynamic (CFD) simulations. The key advantages of the model are its ease of implementation and speed of computation, which is several orders of magnitude faster than the VOF CFD simulations. The model enables rapid parametric analysis of jet breakup and satellite formation as a function of jet dimensions, modulation parameters, and fluid rheology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The effect of droplet elasticity on transient deformation of isolated droplets in immiscible polymer blends of equal viscosity was investigated. In terms of the deformation parameter, Def*=a*c/a*+c where a* and c are apparent drop principal axes, it undergoes two cycles of positive oscillations before reaching a negative value, followed by one cycle of oscillation before attaining a steady state negative value. This behavior was observed when Capillary number, Ca, was varied between 3 and 9 at a fixed Weissenber number, Wi, of 0.31, and when Ca number was held fixed at 8 and Wi number was varied between 0.21 and 0.40. In another blend of relatively lower Wi number of 0.21, one cycle of oscillation in Def* was observed before reaching steady state negative values when Ca number was varied between 3 and 14. The steady state Def* varies inversely with Ca number, with a stronger dependence for the blend with higher Wi number. The magnitude of oscillation increases with increasing Ca and Wi numbers. The critical Ca was found to be 12 and 14 for the two blends studied; these values are about 30 times greater than that of Newtonian blends.  相似文献   

15.
The nonlinear vibration of an isotropic cantilever plate with viscoelastic laminate is investigated in this article. Based on the Von Karman’s nonlinear geometry and using the methods of multiple scales and finite difference, the dimensionless nonlinear equations of motion are analyzed and solved. The solvability condition of nonlinear equations is obtained by eliminating secular terms and, finally, nonlinear natural frequencies and mode-shapes are obtained. Knowing that the linear vibration of this type of plate does not have exact solution, Ritz method is employed to obtain semi-analytical nonlinear mode-shapes of transverse vibration of this plate. Airy stress function and Galerkin method are employed to reduce nonlinear PDEs into an ODE of duffing type. Stability of plate and chaotic behavior are investigated by Runge–Kutta method. Poincare section diagrams are in good agreement with results of Lyapunov criteria.  相似文献   

16.
Li  Lei  Zhang  Qi-chang 《Nonlinear dynamics》2017,87(1):587-604
Nonlinear Dynamics - Viscoelastic phenomena widely exist in MEMS materials, which may have certain effects on transition mechanism of nonlinear jumping phenomena and transient chaotic behaviors....  相似文献   

17.
A computer-controlled four-roll mill was used to investigate the deformation and break-up of polymeric drops in the well-characterized flow of an immiscible Newtonian fluid. Aqueous polymer solutions ranging in concentration from 160 ppm to 3% by weight were examined. For zero-shear-rate viscosity ratios greater than order 1, the deformation of the drops closely followed that of Newtonian fluids, irrespective of the droplet material. However, drops with viscosity ratios less than order 1 had significantly smaller critical deformations and the critical capillary number was found to be substantially smaller. Two modes of drop break-up were discovered that differed substantially from that observed for Newtonian drops in the inclusion of cusped ends and tip streaming.  相似文献   

18.
19.
The frequency response of a cracked beam supported by a nonlinear viscoelastic foundation has been investigated in this study. The Galerkin method in conjunction with the multiple scales method (MSM) is employed to solve the nonlinear governing equations of motion. The steady-state solutions are derived for the two different resonant conditions. A parametric sensitivity analysis is carried out and the effects of different parameters, namely the geometry and location of crack, loading position and the linear and nonlinear foundation parameters, on the frequency-response solution are examined.  相似文献   

20.
We report a technique based on Fresnel diffraction with white illumination that permits the resolution of capillary surface patterns of <100 nm. We investigate Rayleigh–Plateau-like instability on a viscoelastic capillary bridge and show that we can overcome the resolution limit of optical microscopy. The viscoelastic filaments are approximately 20 μ thick at the end of the thinning process when the instability sets in. The wavy distortions grow exponentially in time and the pattern is resolved by an image treatment that is based on an approximation of the measured rising flank of the first Fresnel peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号