首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Manganese–vanadium oxide had been synthesized by a novel simple precipitation technique. Scanning electron microscopy, X-ray diffraction, Brunauer–Emmett–Teller, thermogravimetric analysis/differential scanning calorimetry, and X-ray photoelectron spectroscopy were used to characterize Mn–V binary oxide and δ-MnO2. Electrochemical capacitive behavior of the synthesized Mn–V binary oxide and δ-MnO2 was investigated by cyclic voltammetry, galvanostic charge–discharge curve, and electrochemical impedance spectroscope methods. The results showed that, by introducing V into δ-MnO2, the specific surface area of the mixed oxide increased due to a formation of small grain size. The specific capacitance increased from 166 F g−1 estimated for MnO2 to 251 F g−1 for Mn–V binary oxide, and the applied potential window extended to −0.2–1.0 V (vs. saturated calomel electrode). Through analysis, it is suggested that the capacitance performance of Mn–V binary oxide materials may be improved by changing the following three factors: (1) small grain and particle size and large activity surface area, (2) appropriate amount of lattice water, and (3) chemical state on the surface of MnO2 material.  相似文献   

2.
A protein precipitation method for the determination of clobazam (CLB) and its major active metabolite N-desmethylclobazam (N-CLB) in human plasma by liquid chromatography tandem mass spectrometry (LC–MS/MS) was established. CLB and N-CLB were extracted from human plasma samples by protein precipitation with methanol. Analyte separation was done using a Phenomenex Kinetex™ Biphenyl (50 × 2.1 mm, 1.7 μm) column using isocratic elution with a mobile phase of 5 mm ammonium formate with 0.01% ammonium hydroxide (40%) and methanol (60%) at a flow rate of 0.4 mL/min and an injection volume of 10 μL. The detection was performed on a triple quadrupole mass spectrometer in multiple reaction monitoring mode to monitor the precursor-to-product ion transitions of m/z 301.1 → 259.0, 306.0 → 263.9 for CLB and CLB-D5 and 287.0 → 245.0, 292.0 → 250.0 for N-CLB and N-CLB-D5 in positive electrospray ionization mode, respectively. The method was validated over a concentration range of 2.0–750 ng/mL for CLB and 0.7–200 ng/mL for N-CLB on SCIEX Triple Quad 4500 MS System. Total run time was 5 min. This method has been designed for bioequivalence study for formulations containing 20 mg of CLB.  相似文献   

3.
Branched-cyclodextrins (CDs) such as glucosyl--CD(G--CD) were found to be very effective reagents for selective liquid-liquid extraction of xylene isomers and ethylbenzene since their inclusion complexes did not precipitate and handling of solids was not necessary. Reaction temperatures higher than room temperature did not increase the yield. The inclusion complexation proceeded fast. The liquid-liquid extraction process was found to be energy-saving and not time-consuming.  相似文献   

4.
Novel cobalt catalysts were prepared by sol–gel method, and enhanced by plasma treatment, for methane catalytic combustion. These samples were characterized using X-ray diffraction, X-ray photoelactron spectroscopy, UV-vis spectroscopy, Fourier transform infrared spectroscopy, thermal gravimetrical analysis, N2 Adsorption–desorption, temperature-programmed reduction and hydrogen–oxygen titration technologies. The XPS characterizations suggested that plasma treatment was favorable for the enrichment of surface cobalt, with a value of surface cobalt from 2.2% to 8.5% in mole. The specific surface area of the glow plasma assised sample (Co-Plas-Solgel-2) increased to 320 m2/g comparing with 305 m2/g of the conventional sample (Co-Solgel-1). The ignition temperature (T10%) of Co-Plas-Solgel-2 catalyst was about 50 °C lower than that of Co-Solgel-1, and its CH4 conversion was two times higher than that of Co-Solgel-1 during the whole range of catalytic combustion activity test (340–520 °C). With a better dispersion and more active sites, the plasma assisted sample exhibited significant enhancement in catalytic performances.  相似文献   

5.
Single phase delafossite CuFeO2 thin films were synthesized by a simple sol–gel method. The influence of polyethylene glycol (PEG) on the morphology and optoelectronic properties of the films was studied by addition of 1.0 g PEG in 10 ml precursor solution. The crystal sizes of the derived CuFeO2 films with and without addition of PEG were 49 nm, but the sample with addition of PEG (labeled as CFO-PEG) showed weaker c-axis orientation growth. The sample without addition of PEG (labeled as CFO) showed a compact surface without detectable pores and had a thickness around 50 nm. However, the sample CFO-PEG exhibited a porous surface with worm-like grains in nanometric scale and had a thickness around 310 nm. Enhanced absorbance in UV–vis region was observed for the sample CFO-PEG which might ascribe to both the thickness and porous surface. The optical direct bandgaps at near-UV were estimated to be ~3.0 and 3.38 eV for the sample CFO-PEG and CFO, respectively. Though the porous surface of CFO-PEG has improved the absorbance in UV–vis region, the resistivity has also been increased due to the homogeneous distribution of interspaces between the worm-like grains, which makes the incident photon to current efficiency of CFO-PEG lower than that of CFO.  相似文献   

6.
Hydration behavior of dicalcium silicate (C2S) (Cement chemistry nomenclature is used where C=CaO, S=SiO2, A=Al2O3, S=SO3) and gehlenite (C2AS), synthesized by sol–gel method was investigated by means of isothermal heat flow calorimeter at different temperatures. These phases were obtained by crystallization processing at different temperatures from their xerogels (nano-crystalline) prepared by the sol–gel method at ambient temperature. The crystallization of C2S begins below 600°C and it is well crystallized at 900°C. X-ray diffraction patterns reveal that β-C2S is formed and it remains stable since after slow cooling. The crystallization of C2AS xerogels starts with the formation of C2S, then it reacts with alumina to form mineral C2AS at 1100°C. The effect of hydration temperature upon the hydration reaction of C2S obtained at 600 and 900°C and C2AS annealed at 600 and 1100°C was investigated by means of isothermal calorimeter. An increase in the temperature of hydration brought about initial acceleration of all samples, as indicated by the increased magnitude of peak of calorimetric curves. The microstructure of the samples cured at hydrothermal condition after 1 and 7 days has been examined by means of scanning electron microscopy (SEM). Fine crystals of calcium silicate hydrate (C–S–H) were developed in C2S samples, while C2AS has been hydrated to form gehlenite hydrate supplemented by C–S–H.  相似文献   

7.
Continuous NiTiO3 nanofibers have been successfully synthesized by a sol–gel assisted electrospinning method followed by calcination at 600 °C in air. These nanofibers were characterized for the morphological, structural and optical properties by scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and UV–visible (UV–vis) diffuse reflectance spectroscopy (DRS). SEM results reveal that the obtained NiTiO3 nanofibers are 175 nm in diameter and several micrometers in length after annealing at 600 °C. The XRD analysis shows that the nanofibers possess highly crystalline structure with no impurity phase. In contrast, the NiTiO3 nanoparticles synthesized at the identical conditions by a sol–gel route have impurities including TiO2 and NiO. Moreover, the electrospun NiTiO3 nanofibers are endowed with an obvious optical absorbance in the visible range, demonstrating they have visible light photoresponse.  相似文献   

8.
9.
Aromatic hydrocarbons can be selectively recognized by four endo-functionalized molecular tubes through C/N-H...π interactions in nonpolar media with binding constants up to 1580 L/mol.  相似文献   

10.
SrTiO3 nanofibers were successfully prepared by a facile electrospinning method with subsequent calcination in air. These one dimensional nanostructures were characterized for the morphological, structural and optical properties by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–visible diffuse reflectance spectroscopy. The photocatalytic investigations showed that the SrTiO3 nanofibers possessed enhanced photocatalytic efficiency in photodegradation of rhodamine B and photocatalytic H2 evolution from water splitting under ultraviolet light irradiation, compared with the SrTiO3 nanoparticles and P25. The enhanced photocatalytic performance can be ascribed to the beneficial microstructure and more negative conduction band edge compared with P25.  相似文献   

11.
Using different precursor preparation, heating methods, and initial layers, this work investigated the relation between the micro-structural and electrical properties of ZnO:Al (AZO) films prepared by sol–gel method on glass and silicon substrates. It was found that adding monoethanolamine (MEA), using initial layers, or an intentionally produced steep temperature gradient obviously promoted film growth along the (002) direction. However, the carrier mobility rose only a little while the carrier concentration was not affected or even reduced. Generally speaking, the film conductivity was not evidently improved. It could be concluded that all three methods are advantageous for enhancing the crystallographic quality and therefore the mobility of the AZO films, but the major reason for the poor conductivity of the sol–gel derived ZnO films was the low activation of the dopant, which is the key factor for further improvements and should be solved first.  相似文献   

12.
Nanocrystalline SnO2 particles have been synthesized by a sol–gel method from the very simple starting material granulated tin. The synthesis leads a sol–gel process when citric acid is introduced in the solution obtained by dissolving granulated tin in HNO3. Citric acid has a great effect on stabilizing the precursor solution, and slows down the hydrolysis and condensation processes. The obtained SnO2 particles range from 2.8 to 5.1 nm in size and 289–143 m2 g−1 in specific surface area when the gel is heat treated at different temperatures. The particles show a lattice expansion with the reduction in particle size. With the absence of citric acid, the precursor hydrolyzes and condenses in an uncontrollable manner and the obtained SnO2 nanocrystallites are comparatively larger in size and broader in size distribution. The nanocrystallites have been characterized by means of TG-DSC, FT-IR, XRD, BET and TEM.  相似文献   

13.
Nanostructured aluminum borate was synthesized using sol?Cgel technique. X-ray diffraction study revealed that the synthesized aluminum borate was single crystal. These nanorods have very uniform diameter. High-resolution transmission electron microscope images indicate that aluminum borate is well crystallized. The alternating current (AC) conductivity of the aluminum borate was studied as a function of temperature and frequency. The AC conductivity mechanism of the aluminum borate was found to be proportional to ??s. The exponent s is almost independent with temperature. This suggests that AC conductivity mechanism of the aluminum borate can be interpreted by localized hopping model.  相似文献   

14.
Novel chiral receptors based on l-phenylalanine and l-valine have been synthesized and their chiral recognition properties toward mandelic acid and N-tosyl α-amino acids are studied. The phenylalanine-based receptor undergoes enantioselective gel formation with R-mandelic acid and N-tosyl-d-valine, whereas the valine-linked receptor in their presence results in the formation of precipitates.  相似文献   

15.
Our goal in this research was to obtain lead oxide nano-powders by sol–gel method. In this method, lead oxide nano-powders were synthesized through the reaction of citric acid (C6H7O8·H2O) solution and lead acetate [Pb(C2H3O2)2] solution as stabilizer and precursor, respectively. The effect of different parameters including calcination temperature, (molar ratio of citric acid to lead acetate) and drying conditions were investigated. The prepared lead oxide nano-powders were characterized by FT-IR spectroscopy, X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The prepared PbO samples consist of the particles in the range of 50–120 nm or the thick plate like structures with thickness of 53 nm depending on the drying conditions.  相似文献   

16.
Solubilities of anthracene and phenanthrene in water were measured at 298.15K at pressures to 200 MPa and were found to decrease with increasing pressure.From the pressure coefficients of the solubilities, the volume changesaccompanying the dissolution were estimated to be 15.1±0.6 cm3-mol–1 for anthraceneand 12.4±0.3 cm3-mol–1 for phenanthrene. The partial molar volumes of thesesolutes in water are presumed to decrease with increasing pressure, contrary to thenegative compressibility of alkylbenzenes previously observed in water. Volumechanges accompanying hydrophobic hydration are also estimated to be 1.4cm3-mol–1 for anthracene and 4.1 cm3-mol–1 for phenanthrene, respectively. Thesepositive values are opposite to the negative ones usually observed for hydrophobichydration. The hydration structure of these hydrocarbons is discussed.  相似文献   

17.
Polystyrene/polypyrrole (PS/PPy) core–shell nanocomposite particles with uniform and tailored morphology have been successfully synthesized using the “naked” PS particulate substrate with the aid of a proposed strategy, the so-called swelling–diffusion–interfacial polymerization method. After initially forming pyrrole-swollen PS particles, diffusion of the monomer toward the aqueous phase was controlled through the addition of hydrochloric acid, eventually leading to its polymerization on the substrate particle surface. This process allows the nanocomposite particles to possess uniform and intact PPy overlayer and affords much more effective control over the structure and morphology of the resultant nanocomposites by simply changing the PS/pyrrole weight ratio or the addition amount of the doping acid. In particular, the nanocomposite particles with a thin, uniform, and intact PPy overlayer and their corresponding PPy hollow particles were obtained at a low addition amount of pyrrole. The resultant nanocomposite particles have been extensively characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and thermogravimetry.  相似文献   

18.
Solvation properties of aliphatic alcohol–water and fluorinated alcohol–water solutions were probed by amide molecules as solutes using infrared (IR) and 1H and 13C NMR techniques. These include four alcohols: ethanol (EtOH), 2-propanol (2-PrOH), 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and three amides: N-methylformamide (NMF), N-methylacetamide (NMA) and N-methylpropionamide (NMP). The hydrogen bonds of the amide carbonyl oxygen with water are gradually weakened as the alcohol content increases. This decreases in the order of HFIP > TFE ≈ 2-PrOH > EtOH. In TFE– and HFIP–water solutions, the hydrogen bond between the amide amino hydrogen and water is also gradually broken with increasing x A. This trend is more notable in the order of NMP > NMA > NMF. The hydrophobic moieties of the amide methyl and ethyl groups are solvated by the fluoroalkyl groups of fluorinated alcohols due to the hydrophobic interaction among them. Thus, the steric hindrance generated by the solvated alkyl group of amides promotes the breaking of the hydrogen bonds between amide and water.  相似文献   

19.
A series of Pt–TiO2 photocatalysts were prepared by a facile precipitation–photoreduction method under different pH conditions, using H2PtCl6 as platinum precursor. The microstructure and chemical state of Pt loaded on the surface of TiO2 were analyzed by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). It was revealed that the size and distribution of Pt nanoparticles on TiO2 surface is closely related to the initial pH of H2PtCl6 solution. The optimal pH value for forming highly dispersed Pt nanoparticles is 12. The photocatalytic activities of the prepared samples were investigated in terms of hydrogen production. The results indicated that the Pt–TiO2 sample prepared by precipitation–photodeposition method shows much higher activity than that prepared by traditional photodeposition method.  相似文献   

20.
Metal-organic coordination polymers (CP) have attracted the scientific attention for electrochemical water oxidation as it has the similar coordination structure like natural photosynthetic coordinated complex. However, the harsh synthesis conditions and bulky nature pose a major challenge in the field of catalysis. Herein, 3–5 nm CP particles synthesized at room temperature using aqueous solutions of Ni2+/Cu2+ and 2,5-dihydroxyterepthalic acid as precursor were applied for alkaline water and urea electrolysis. The overpotential required is only 300 mV at 10 mA cm−2 by Nano-Ni CP for water oxidation, with turnover frequency (TOF) of 21.4 s−1 which is around 8 times higher than its bulk-counterpart. Overall water and urea splitting were achieved with Nano-Cu (−) ∥ Nano-Ni (+) couple on Ni foam at 1.69 and 1.52 V to achieve 10 mA cm−2, respectively. High electrochemical surface area (ECSA), high TOF, and enhanced mass diffusion are found to be the key parameters responsible for the state-of-the-art water and urea splitting performances of nano-CPs as compared to their bulk counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号