首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gossypol, the polyphenolic constituent isolated from cottonseeds, has been used as a male antifertility drug for a long time, and has been demonstrated to exhibit excellent anti-tumor activity towards multiple cancer types. The toxic effects of gossypol limit its clinical utilization, and enzyme inhibition is an important facet of this. In the present study, in vitro human liver microsomal incubation system supplemented with UDPGA was used to investigate the inhibition of gossypol towards UGT1A1, 1A9 and 2B7-mediated metabolism of xenobiotics and endogenous substances. Estradiol, the probe substrate of UGT1A1, was selected as representative endogenous substance. Propofol (a probe substrate of UGT1A9) and 3'-azido-3'-deoxythimidine (AZT, a probe substrate of UGT2B7) were employed as representative xenobiotics. The results showed that gossypol noncompetitively inhibits UGT-mediated estradiol-3-glucuronidation and propofol O-glucuronidation, and the inhibition kinetic parameters (K(i)) were calculated to be 34.2 and 16.4 μM, respectively. Gossypol was demonstrated to exhibit competitive inhibition towards UGT-mediated AZT glucuronidation, and the inhibition kinetic parameter (K(i)) was determined to be 14.0 μM. All these results indicated that gossypol might induce metabolic disorders of endogenous substances and alteration of metabolic behaviour of co-administered xenobiotics through inhibition of UGTs' activity.  相似文献   

3.
Inhibition of UDP-glucuronosyltransferase (UGT) isoforms can result in severe clinical results, including clinical drug-drug interactions (DDI) and metabolic disorders of endogenous substances. The present study aims to investigate the inhibition of demethylzeylasteral (an important active component isolated from Tripterygium wilfordii Hook F.) towards three important UGT isoforms UGT1A6, UGT1A9 and UGT2B7. The results showed that 100 μM of demethylzeylasteral exhibited strong inhibition towards UGT1A6 and UGT2B7, with negligible influence towards UGT1A9. Furthermore, Dixon and Lineweaver-Burk plots showed the inhibition of UGT1A6 and UGT2B7 by demethylzeylasteral was best fit to competitive inhibition, and the inhibition kinetic parameters (Ki) were calculated to be 0.6 μM and 17.3 μM for UGT1A6 and UGT2B7, respectively. This kind of inhibitory effect need much attention when demethylzeylasteral and demethylzeyasteral-containing herbs (e.g., Tripterygium wilfordii Hook F.) were co-administered with the drugs mainly undergoing UGT1A6, UGT2B7-catalyzed metabolism. However, when extrapolating the in vivo clinical results using our present in vitro data, many complex factors might affect final results, including the contribution of UGT1A6 and UGT2B7 to the metabolism of compounds, and the herbal or patients' factors affecting the in vivo concentration of demethylzeylasteral.  相似文献   

4.
Artocarpin isolated from an agricultural plant Artocarpus communis has shows anti‐inflammation and anticancer activities. In this study, we utilized recombinant human UDP‐glucuronosyltransferasesupersomes (UGTs) and human liver microsomes to explore its inhibitory effect on UGTs and cytochrome p450 enzymes (CYPs). Chemical inhibition studies and screening assays with recombinant human CYPs were used to identify if CYP isoform is involved in artocarpin metabolism. Artocarpin showed strong inhibition against UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, CYP2C8 and CYP3A4. In particular, artocarpin exhibited competitive inhibition against CYP3A4 and noncompetitive inhibition against UGT1A3 and UGT1A7. The half inhibition concentration values for CYP3A4, UGT1A3 and UGT1A7 were 4.67, 3.82 and 4.82 μm , and the inhibition kinetic parameters for them were 0.78, 2.67 and 3.14 μm , respectively. After artocarpin was incubated in human liver microsomes and determined by HPLC, we observed its main metabolites (M1 and M2). In addition, we proved that CYP2D6 played the key role in the biotransformation of artocarpin in human liver microsomes. The result of molecular docking further confirmed that artocarpin interacted with CYP2D6, CYP2C8 and CYP3A4 through hydrogen bonds. This study provided preliminary results for further research on artocarpin or artocarpin‐containing herbs.  相似文献   

5.
Corydaline is a bioactive alkaloid with various antiacetylcholinesterase, antiallergic, and antinociceptive activities found in the medicinal herb Corydalis Tubers. The inhibitory potential of corydaline on the activities of seven major human cytochrome P450 and four UDP-glucuronosyltransferase enzymes in human liver microsomes was investigated using LC-tandem MS. Corydaline was found to inhibit CYP2C19-catalyzed S-mephenytoin-4'-hydroxylatoin and CYP2C9-catalyzed diclofenac 4-hydroxylation, with K(i) values of 1.7 and 7.0 mM, respectively. Corydaline also demonstrated moderate inhibition of UGT1A1-mediated 17b-estradiol 3-glucuronidation and UGT1A9-mediated propofol glucuronidation with K(i) values of 57.6 and 37.3 mM, respectively. In the presence of corydaline, CYP3A-mediated midazolam hydroxylation showed a decrease with increasing preincubation time in a dose-dependent manner with K(i) values of 30.0 mM. These in vitro results suggest that corydaline should be evaluated for potential pharmacokinetic drug interactions in vivo due to potent inhibition of CYP2C19 and CYP2C9.  相似文献   

6.
Ethyl glucuronide (EtG), a minor metabolite of ethanol, is used as a marker of alcohol consumption in a variety of clinical and forensic settings. At present there are very few studies of UDP-glucuronosyltransferases (UGT), responsible for catalyzing EtG formation, and the possible effect of nutritional components, e.g. flavonoids, which are extensively glucuronidated, on EtG formation has not been addressed at all. The following incubation conditions were optimized with regard to previously published conditions: buffer, substrate concentration, and incubation time. Isolation of EtG from the incubation mixture was also optimized. Recombinant UGT enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7, 2B10, 2B15) were screened for their activity towards ethanol, and kinetic data were then established for all enzymes. It was decided to study the effect of the flavonoids quercetin and kaempferol on glucuronidation of ethanol. Isolation was by solid-phase extraction (SPE) to minimize matrix effects. Analysis was performed by liquid chromatography–tandem mass spectrometry (LC–MS–MS), with EtG-d5 as the internal standard. SPE was vital to avoid severe ion suppression after direct injection of the incubation solution. EtG formation was observed for all enzymes under investigation; their kinetics followed the Michaelis–Menten model, meaning the maximum reaction rate achieved at saturating substrate concentrations (V max) and the substrate concentration at which the reaction rate is half of V max (Michaelis–Menten constant, K m) could be calculated. The highest rate of glucuronidation was observed with UGT1A9 and 2B7. After co-incubation with both flavonoids, formation of EtG was significantly reduced for all enzymes except for UGT2B15, whose activity did not seem to be affected. Results reveal that multiple UGT isoforms are capable of catalyzing glucuronidation of ethanol; nevertheless, the effect of UGT polymorphism on glucuronidation of ethanol needs further study. Formation of EtG is inhibited by the flavonoids under investigation. Obviously, nutritional components affect conversion of ethanol to EtG. This observation may serve as a partial explanation of its variable formation in man.
Figure
Dixon Plot for determination of the inhibitory constant Ki for UGT1A9 and quercetin  相似文献   

7.
The uridine 5'-diphosphate- (UDP-)glucuronosyltransferase (UGT) family of enzymes catalyzes the conjugation of chemicals containing a suitable nucleophilic atom with glucuronic acid. Despite the importance of glucuronidation as an elimination and detoxification mechanism for drugs, environmental chemicals, and endogenous compounds, the structural features of substrates that confer isoform selectivity are poorly understood. The relationship between the local molecular structure of nucleophilic atoms of chemicals and the ability of UGT isoforms to glucuronidate the nucleophilic atoms was investigated here. The proximity of an aromatic ring to the nucleophilic atom was highly associated with a greater likelihood of glucuronidation by most UGT isoforms. Similarly, most UGT isoforms were found to have a statistically significant preference for oxygen over nitrogen as the nucleophilic atom. The converse was established only for UGT1A4. Na?ve Bayes models were trained to predict the site of glucuronidation for eight UGT isoforms on the basis of the partial charge and Fukui function of the nucleophilic atom and whether an aromatic ring was attached to the nucleophilic atom. On average, the cross-validated sensitivity and specificity of the models were approximately 75-80%. For all but UGT2B7, the area under the receiver operating characteristics curve of the model was greater than 0.8, indicating strong predictive ability. A chemical diversity analysis of the currently available data indicates bias toward chemicals containing phenolic groups, and it is likely that the availability of chemical data sets with greater diversity will facilitate further insights into the structural features of substrates that confer enzyme selectivity.  相似文献   

8.
Glucuronidation is a Phase 2 metabolic pathway responsible for the metabolism and excretion of testosterone to a conjugate testosterone glucuronide. Bioavailability and the rate of anabolic steroid testosterone metabolism can be affected upon UGT glucuronidation enzyme alteration. However, there is a lack of information about the in vitro potential assessment of UGT2B17 inhibition by salicylic acid. The purpose of this study is to investigate if UGT2B17 enzyme activity is inhibited by salicylic acid. A UGT2B17 assay was developed and validated by HPLC using a C18 reversed phase column (SUPELCO 25 cm × 4.6 mm, 5 μm) at 246 nm using a gradient elution mobile phase system: (A) phosphate buffer (0.01 M) at pH = 3.8, (B) HPLC grade acetonitrile and (C) HPLC grade methanol. The UGT2B17 metabolite (testosterone glucuronide) was quantified using human UGT2B17 supersomes by a validated HPLC method. The type of inhibition was determined by Lineweaver–Burk plots. These were constructed from the in vitro inhibition of salicylic acid at different concentration levels. The UGT2B17 assay showed good linearity (R2 > 0.99), acceptable recovery and accuracy (80–120%), good reproducibility and acceptable inter and intra-assay precision (<15%), low detection (6.42 and 2.76 μM) and quantitation limit values (19.46 and 8.38 μM) for testosterone and testosterone glucuronide respectively, according to ICH guidelines. Testosterone and testosterone glucuronide were found to be stable up to 72 h in normal laboratory conditions. Our investigational study showed that salicylic acid uncompetitively inhibited UGT2B17 enzyme activity. Thus, drugs that are substrates for the UGT2B17 enzyme have negligible potential effect of causing interaction with salicylic acid in humans.  相似文献   

9.
Prim‐O‐glucosylcimifugin (PGCN) and cimifugin (CN) are major constituents of Radix Saposhnikoviae that have antipyretic, analgesic and anti‐inflammatory pharmacological activities. However, there were few reports with respect to the metabolism of PGCN and CN in vitro. In this paper, we describe a strategy using ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) for fast analysis of the metabolic profile of PGCN and CN in human liver microsomes. In total, five phase I metabolites of PGCN, seven phase I metabolites and two phase II metabolites of CN were identified in the incubation of human liver microsomes. The results revealed that the main phase I metabolic pathways of PGCN were hydroxylation and hydrolysis reactions. The phase I metabolic pathways of CN were found to be hydroxylation, demethylation and dehydrogenation. Meanwhile, the results indicated that O‐glucuronidation was the major metabolic pathway of CN in phase II metabolism. The specific UDP‐glucuronosyltransferase (UGT) enzymes responsible for CN glucuronidation metabolites were identified using recombinant UGT enzymes. The results indicated that UGT1A1, UGT1A9, UGT2B4 and UGT2B7 might play major roles in the glucuronidation of CN. Overall, this study may be useful for the investigation of metabolic mechanism of PGCN and CN, and it can provide reference and evidence for further pharmacodynamic experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Gilbert's syndrome, due to reduced hepatic bilirubin glucuronidation is associated with the presence of two extra nucleotides (TA) in the promoter region of the UDP-glucuronosyltransferase 1 (UGT1A1) gene. A rapid method was developed to detect this genetic polymorphism, using double gradient denaturing gradient gel electrophoresis (DG-DGGE). The promoter region of the UGT1A1 gene was amplified with a 40-mer GC-clamp attached to the 5'-end of the reverse primer. The polymerase chain reaction (PCR) product was then separated by DG-DGGE using denaturant concentrations of 15-25% and polyacrylamide concentrations of 6-12%. The (TA)6/(TA)6 homozygotes were clearly distinguished from both (TA)7/(TA)7 homozygotes and (TA)6/(TA)7 heterozygotes. The (TA)7 allele frequency was consistent with that previously reported and elevated bilirubin levels correlated with the presence of the (TA)7 allele. The DG-DGGE method described will make detection for this polymorphism fast, simple, nonradioactive and suitable for a clinical routine diagnostic laboratory, helping to establish the role of this polymorphism in individuals with jaundice due to multiple causes.  相似文献   

11.
A three-part tandem mass spectrometric strategy that entails MSn analysis and a post-column LC-MS cobalt complexation method is developed to identify flavonoid monoglucuronide metabolites synthesized using the 1A1 isozyme of human UDP-glucuronosyltransferase (UGT). Ten flavonoid aglycons were used as substrates, spanning the subclasses of flavones, flavonols, and flavanones. The products were characterized by LC-MS and LC-MSn, with post-column cobalt complexation employed to pinpoint the specific sites of conjugation. The dissociation of complexes of the form [Co(II) (flavonoid glucuronide - H) (4,7-diphenyl-1,10-phenanthroline)(2)]+ allowed identification of the products and differentiation of isomers. The correlation between glycosylation site and elution order is used to provide additional structural confirmation. Flavonoids lacking a 3' hydroxyl group were glucuronidated only at position 7, while those containing this functionality also formed 3'-O-glucuronides and sometimes 4'-O-glucuronides, thus supporting the conclusion that the presence or absence of the 3'-OH group is the major determinant of the regioselectivity of glucuronidation. Moreover, the specific distribution of multiple glucuronide products (7-O, 3'-O, 4'-O) is governed by the subclass of flavonoid.  相似文献   

12.
Liver injury induced by Polygonum multiflorum root (PMR) is an immediate issue requiring global attention. UDP-glucuronosyltransferase 1A1 (UGT1A1) inhibitors are suspected to additively contribute to the hepatotoxicity of PMR. This study was deliberately designed to simultaneously screen UGT1A1 inhibitors from PMR, and their co-contribution to hepatotoxicity was determined. Using ultrafiltration coupled to LC–MS method, four compounds, namely cis-2,3,5,4′-tetrahydroxystilbene-2-O-β-glucoside, trans-2,3,5,4′-tetrahydroxystilbene-2-O-β-d -glucoside, emodin-8-O-β-d -glucoside, and emodin, were screened, exhibiting the in vitro inhibitory activities against UGT1A1 with IC50 values of 76.23, 18.70, 62.18, and 34.02 μM, respectively. The varying activities of the screened UGT1A1 inhibitors were demonstrated by performing a molecular docking simulation. Finally, zebrafish larvae and mice assays demonstrated that the UGT1A1 inhibitors co-contributed to the hepatotoxicity of PMR. These findings are conducive to understand the role of UGT1A1 inhibitors in PMR-induced hepatotoxicity.  相似文献   

13.
Glucuronidation plays critical role in the elimination of bergenin; however the metabolic mechanism of UDP‐glucuronosyltransferases (UGTs) in the process remains to be investigated. In this study, the kinetics of bergenin glucuronidation by pooled human liver microsomes (HLMs) and 12 recombinat UGT isozymes were investigated. The glucuronidation of bergenin can be shown in HLMs with a Km value of 231.62 ± 14.08 µm and a Vmax value of 2.17 ± 0.21 nmol/min/(mg protein). Among the 12 human UGTs investigated, UGT1A1 was identified as the major isoform catalyzing the glucuronidation of bergenin [Km value of 200.37 ± 26.73 µm and Vmax value of 1.88 ± 0.26 nmol/min/(mg protein)]. The bergenin glucuronosyltransferase activities in HLMs and UGT1A1 were inhibited by phenylbutazone, estradiol and bilirubin. The results demonstrate that bergenin glucuronidation in HLMs is specifically catalyzed by UGT1A1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Mast cells (MCs) are an important treatment target for high-affinity IgE Fc receptor (FcεRI)-mediated allergic diseases. The plant-derived molecule 4-methylumbelliferone (4-MU) has beneficial effects in animal models of inflammation and autoimmunity diseases. The aim of this study was to examine 4-MU effects on MC activation and probe the underlying molecular mechanism(s). We sensitized rat basophilic leukemia cells (RBLs) and mouse bone marrow-derived mast cells (BMMCs) with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated them with exposure to DNP-human serum albumin (HSA), and then treated stimulated cells with 4-MU. Signaling-protein expression was determined by immunoblotting. In vivo allergic responses were examined in IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) mouse models. 4-MU inhibited β-hexosaminidase activity and histamine release dose-dependently in FcεRI-activated RBLs and BMMCs. Additionally, 4-MU reduced cytomorphological elongation and F-actin reorganization while down-regulating IgE/Ag-induced phosphorylation of SYK, NF-κB p65, ERK1/2, p38, and JNK. Moreover, 4-MU attenuated the PCA allergic reaction (i.e., less ear thickening and dye extravasation). Similarly, we found that 4-MU decreased body temperature, serum histamine, and IL4 secretion in OVA-challenged ASA model mice. In conclusion, 4-MU had a suppressing effect on MC activation both in vitro and in vivo and thus may represent a new strategy for treating IgE-mediated allergic conditions.  相似文献   

15.
The use of selective oestrogen receptor modulators has been prohibited since 2005 by the World Anti-Doping Agency regulations. As they are extensively cleared by hepatic and intestinal metabolism via oxidative and conjugating enzymes, a complete investigation of their biotransformation pathways and kinetics of excretion is essential for the anti-doping laboratories to select the right marker(s) of misuse. This work was designed to characterize the chemical reactions and the metabolizing enzymes involved in the metabolic routes of clomiphene, tamoxifen and toremifene. To determine the biotransformation pathways of the substrates under investigation, urine samples were collected from six subjects (three females and three males) after oral administration of 50 mg of clomiphene citrate or 40 mg of tamoxifen or 60 mg of toremifene, whereas the metabolizing enzymes were characterized in vitro, using expressed cytochrome P450s and uridine diphosphoglucuronosyltransferases. The separation, identification and determination of the compounds formed in the in vivo and in vitro experiments were carried out by liquid chromatography coupled with mass spectrometry techniques using different acquisition modes. Clomiphene, tamoxifen and toremifene were biotransformed to 22, 23 and 18 metabolites respectively, these phase I reactions being catalyzed mainly by CYP3A4 and CYP2D6 isoforms and, to a lesser degree, by CYP3A5, CYP2B6, CYP2C9, CYP2C19 isoforms. The phase I metabolic reactions include hydroxylation in different positions, N-oxidation, dehalogenation, carboxylation, hydrogenation, methoxylation, N-dealkylation and combinations of them. In turn, most of the phase I metabolites underwent conjugation reaction to form the corresponding glucuro-conjugated mainly by UGT1A1, UGT1A3, UGT1A4, UGT2B7, UGT2B15 and UGT2B17 isoenzymes.  相似文献   

16.
A simple and sensitive assay for glucuronidation activity of 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan (CPT-11), in human liver microsomes by high-performance liquid chromatography (HPLC) with fluorescence detection is reported. The method was validated for the determination of SN-38 glucuronide (SN-38G) with respect to specificity, linearity, recovery, stability, precision, accuracy, and limits of detection and quantitation. There was no interference from matrix and non-enzymatic reactions. The calibration curve for SN-38G was linear from 5 to 500 nM. Average recoveries ranged from 98 to 100% in spiked human liver microsome samples, and the SN-38G was stable at 4 degrees C for at least 72 h. The newly developed method was found to be more sensitive and selective than previous methods using thin layer chromatography and HPLC. The limit of quantitation for SN-38G was 5 nM (2.5 pmol/assay). The intra- and inter-day precision and accuracy were less than 7 and 4%, respectively. The intra- and inter-day precision of enzyme assay for UDP-glucuronosyltransferase (UGT) activity toward SN-38 in human liver microsomes was less than 4%. With this improved sensitivity, the kinetics of SN-38 glucuronidation in human liver microsomes could be determined more precisely. Therefore, this method is applicable to in vitro study on the side effects and drug interactions of CPT-11 using small amounts of biological sample.  相似文献   

17.
Catechols were synthesized from safrole. Nine derivatives were prepared and assessed for antiproliferative effects using different human cell lines. The in vitro growth inhibition assay was based on the sulphorhodamine dye to quantify cell viability. The derivatives 4-allylbenzene-1,2-diol (3), 4 4-[3-(acetyloxy)propyl]-1,2-phenylene diacetate (6) and 4-[3-(acetyloxy)propyl]-5-nitro-1,2-phenylene diacetate (10) showed higher cytotoxicity than the parent compound 2 in tests performed on two breast cancer cell lines (MCF-7 and MDA-MB-231). The IC?? values of 40.2 ± 6.9 μM, 5.9 ± 0.8 μM and 33.8 ± 4.9 μM, respectively, were obtained without toxicity towards dermal human fibroblast (DHF cells).  相似文献   

18.
《Electrophoresis》2018,39(12):1478-1481
Glucuronidation catalyzed by uridine‐5′‐diphospho‐glucuronosyl‐transferases (UGTs) is the most important reaction in phase II metabolism of drugs and other compounds. O‐glucuronidation is more common than N‐glucuronidation. The anesthetic, analgesic and antidepressive drug ketamine is metabolized in phase I by cytochrome P450 enzymes to norketamine, hydroxynorketamine (HNK) diastereomers and dehydronorketamine (DHNK). Equine urine samples collected two hours after ketamine injection were treated with β‐glucuronidase and analyzed with three enantioselective capillary electrophoresis assays. Concentrations of HNK diastereomers and norketamine were significantly higher in comparison to untreated urine and an increase of ketamine and DHNK levels was found in selected but not all samples. This suggests that O‐glucuronides of HNK and N‐glucuronides of the other compounds are formed in equines. N‐glucuronidation of norketamine was studied in vitro with liver microsomes of different species and the single human enzyme UGT1A4. With equine liver microsomes (ELM) a stereoselective N‐glucuronidation of norketamine was found that compares well to the results obtained with urines collected after ketamine administration. No reaction was observed with canine liver microsomes, human liver microsomes and UGT1A4. Incubation of ketamine and DHNK with ELM did not reveal any glucuronidation. Enantioselective CE is suitable to provide insight into the phase II metabolism of ketamine and its metabolites.  相似文献   

19.
The anti-inflammatory and anticancer activities of a methanol extract of the rhizome of Cnidium officinale were investigated. Four compounds, namely falcarindiol (1), 6-hydroxy-7-methoxy-dihydroligustilide (2), ligustilidiol (3), and senkyunolide H (4) were isolated from the extract of the rhizome of Cnidium officinale and their structures were elucidated by analysis of their spectroscopic data and by comparison with previously reported data. These compounds showed anti-inflammatory activities, measured as inhibition of nitric oxide (NO) release in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells, with IC(50) values of 4.31 ± 5.22, 152.95 ± 4.23, 72.78 ± 5.13, and 173.42 ± 3.22 μM, respectively. They also inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression induced by LPS. Among these compounds, falcarindiol (1) was found to have anti-proliferative effect against MCF-7 human breast cancer cells by induction of a G(0)/G(1) cell cycle block of the cells, with an IC(50) value of 35.67 μM. Typical apoptotic effects were observed by phase contrast microscopy and were also exhibited in fluorescence microscopy with Hoechst 33342 staining. In addition, falcarindiol induced apoptosis through strongly increased mRNA expression of Bax and p53, and slightly reduced Bcl-2 mRNA levels in a dose dependent manner. This study suggested that C. officinale extract and its components would be valuable candidates in therapeutic applications for anti-inflammatory and anti-cancer agents.  相似文献   

20.
UDP-glucuronsyltransferases (UGTs) are a family of conjugating enzymes that participate in the metabolism of many drugs. The study of potential drug–drug interactions involving UGTs has been largely hindered by the limited availability of selective functional assays for individual UGT enzymes. We propose a sensitive and reproducible procedure for the activity measurements of four major human hepatic UGT forms. The assays are based on analysis and quantification by high-performance liquid chromatography–tandem mass spectrometry of glucuronides formed from selective probe substrates, namely, β-estradiol (UGT1A1, 3-glucuronide), 1-naphthol (UGT1A6), propofol (UGT1A9), and naloxone (UGT2B7). The analytical methods developed in the present study have been validated under good laboratory practice compliance following FDA recommendations. The assays can be easily applied to both phenotyping UGT reactions in liver-derived cellular and subcellular systems, and drug–drug interaction in vitro studies. Chemical inhibition of UGTs was tested in human liver microsomes at substrate concentrations lower than the corresponding K M values. Under these conditions, selective inhibition of UGT2B7 by fluconazole and low amitriptyline concentrations were observed, whereas diclofenac and quinidine were shown as non-enzyme-selective inhibitors of UGTs. Induction of UGTs was studied in primary human hepatocytes and HepG2 cells cultured in 96-well plates. Aryl hydrocarbon receptor ligands (except indirubin in hepatocytes) increased the UGT1A1 activity in both cell models. The highest effects were observed in HepG2 cells exposed to indirubin (21-fold over the control) and omeprazole or β-naphthoflavone (about sixfold). Although variable effects were observed in other UGT enzymes, the degree of induction was generally lower than that for UGT1A1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号