首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By tailoring capillary interactions at a fluid–fluid interface, a hierarchical two-dimensional self-assembly of hexagonal millimeter-sized poly(dimethylsiloxane) plates has been demonstrated (see picture). The strength and direction of capillary forces between plates was controlled by patterning of the surfaces of the plates to be hydophobic or hydrophilic. The thick lines indicate hydrophobic faces whose mutual attraction forms the basis of capillarity.  相似文献   

2.
The manipulation of colloidal nanoparticles (NPs) in a drying droplet has critical importance not only for several industrial applications but also their assembly into patterns on surfaces. The influence of a tip with hydrophilic or hydrophobic surfaces dipped into a drying droplet on hydrophilic or hydrophobic surfaces on the behavior of 98 nm latex NPs was investigated. The formation of concentric rings on hydrophilic glass surfaces regardless of the surface chemistry of the dipped tip was observed. On the other hand, no pattern formation on hydrophobic surfaces was observed with the insertion of the tip. With a hydrophilic tip, the concentric rings were formed due to stick-slip motion of the solvent contact line resulting from competition between pinning and capillary forces while the capillary effect was not effective until the surface of the tip was changed by adherent NPs making the tip surface available for water adherence with a hydrophobic tip, which results in the pulling of droplet towards the tip. It is also found that the tip thickness and suspension concentration significantly influences the formation of concentric rings on surfaces. This simple procedure can be used to influence the distribution or assembly of NPs in the droplet area.  相似文献   

3.
This article presents a strategy for the fabrication of ordered microstructures using concepts of design inspired by molecular self-assembly and template-directed synthesis. The self-assembling components are 4-microm-thick hexagonal metal plates having sides 10 microm in length ("hexagons"), and each template consists of a 4-microm-thick circular metal plate surrounding a central cavity, the perimeter of which is complementary in shape to the external edges of a two-dimensional, close-packed array of hexagons. The hexagons and templates (collectively, "pieces") were fabricated via standard procedures and patterned into hydrophobic and hydrophilic regions using self-assembled monolayers (SAMs). Templated self-assembly occurs in water through capillary interactions between thin films of a nonpolar liquid adhesive coating the hydrophobic faces of the pieces. The hexagons tile the cavities enclosed by the templates, and the boundaries of the cavities determine the sizes and shapes of the assemblies. Curing the adhesive with ultraviolet light furnishes mechanically stable arrays having well-defined morphologies. By allowing control over the structures of the resulting aggregates, this work represents a step toward the development of practical methods for microfabrication based on self-assembly.  相似文献   

4.
Designing peptide sequences that self-assemble into well-defined nanostructures can open a new venue for the development of novel drug carriers and molecular contrast agents. Current approaches are often based on a linear block-design of amphiphilic peptides where a hydrophilic peptide chain is terminated by a hydrophobic tail. Here, a new template for a self-assembling tetrapeptide (YXKX, Y = tyrosine, X = alkylated tyrosine, K = lysine) is proposed with two distinct sides relative to the peptide's backbone: alkylated hydrophobic residues on one side and hydrophilic residues on the other side. Using all-atom molecular dynamics simulations, the self-assembly pathway of the tetrapeptide is analyzed for two different concentrations. At both concentrations, tetrapeptides self-assembled into a nanosphere structure. The alkylated tyrosines initialize the self-assembly process via a strong hydrophobic effect and to reduce exposure to the aqueous solvent, they formed a hydrophobic core. The hydrophilic residues occupied the surface of the self-assembled nanosphere. Ordered arrangement of tetrapeptides within the nanosphere with the backbone hydrogen bonding led to a beta sheet formation. Alkyl chain length constrained the size and shape of the nanosphere. This study provides foundation for further exploration of self-assembling structures that are based on peptides with hydrophobic and hydrophilic moieties located on the opposite sides of a peptide backbone.  相似文献   

5.
This paper describes the self-assembly of small objects--polyhedral metal plates with largest dimensions of 10 to 30 microm--into highly ordered, three-dimensional arrays. The plates were fabricated using photolithography and electrodeposition techniques, and the faces of the plates were functionalized to be hydrophobic or hydrophilic using self-assembled monolayers (SAMs). Self-assembly occurs in water through capillary interactions between thin films of a hydrophobic liquid (a liquid prepolymer adhesive) coated onto the hydrophobic faces of the plates; coalescence of the adhesive films reduces the interfacial free energy of the system and drives self-assembly. By altering the size and surface-patterning of the plates, the external morphologies of the aggregates were varied. Curing the adhesive furnished mechanically stable aggregates that were characterized by scanning electron microscopy (SEM). For assemblies formed by plates partially composed of a sacrificial material, a subsequent etching step furnished fully open, three-dimensional microstructures. This work validates the use of capillary interactions for three-dimensional mesoscale self-assembly in the 10-microm-size regime and opens new avenues for the fabrication of complex, three-dimensional microscructures.  相似文献   

6.
We present a capillary flow system for liquid transport in microsystems. Our simple microfluidic system consists of two planar parallel surfaces, separated by spacers. One of the surfaces is entirely hydrophobic, the other mainly hydrophobic, but with hydrophilic pathways defined on it by photolithographic means. By controlling the wetting properties of the surfaces in this manner, the liquid can be confined to certain areas defined by the hydrophilic pathways. This technique eliminates the need for alignment of the two surfaces. Patterned plasma-polymerized hexafluoropropene constitutes the hydrophobic areas, whereas the untreated glass surface constitutes the hydrophilic pathways. We developed a theoretical model of the capillary flow and obtained analytical solutions which are in good agreement with the experimental results. The capillarity-driven microflow system was also used to pattern and immobilize biological material on planar substrates: well-defined 200 microm wide strips of human cells (HeLa) and fluorescence labelled proteins (fluorescein isothiocyanate-labelled bovine serum albumin, i.e., FITC-BSA) were fabricated using the capillary flow system presented here.  相似文献   

7.
环糊精及其衍生物具有“内疏水、外亲水”的特殊分子结构,可与许多客体分子包结形成包合物。利用环糊精与聚合物的包结作用构建稳定、结构可控并具有广泛应用前景的生物医用材料是材料及医学界研究的焦点之一。本文介绍了环糊精基(准)聚轮烷的概念及其组装驱动力,同时围绕由环糊精和聚合物组装形成的(准)聚轮烷在生物医用方面的研究包括药物载体(如超分子凝胶、超分子胶束、超分子纳米囊泡、药物键合(准)聚轮烷、刺激响应型(准)聚轮烷等)、基因载体、多重识别与靶向、形状记忆材料及其它相关领域工作进展作一概述。  相似文献   

8.
为了研究表面活性剂类多肽疏水链段长度及亲疏水氨基酸比例对其自组装结构的影响,本文设计了一种表面活性剂类多肽A6K的二倍体A6KA6K。圆二色谱分析表明的二级结构主要为无规卷曲结构并伴有少量的α-螺旋;透射电子显微镜和动态光散射分析表明,其在水溶液中能自组装形成纳米囊泡状结构。芘荧光分子探针研究表明自组装体存在疏水微区域将芘分子包裹在其中,证明了这种多肽在溶液中可形成胶束类的自组装体,并计算了其临界胶束浓度。相比已报道的表面活性剂类肽A6K,本文设计的肽序列A6KA6K由于在较长疏水链段区域中存在亲水性氨基酸K,对疏水相互作用有影响,使得含有14个氨基酸的肽自组装形成纳米囊泡状结构。  相似文献   

9.
The interaction between energetically asymmetric hydrophilic and hydrophobic surfaces has fundamental and practical importance in both industrial and natural colloidal systems. The interaction forces between a hydrophilic silica sphere and a silanated, hydrophobic glass plate in N-methyl-2-pyrrolidone (NMP)-water binary mixtures were measured using atomic force microscopy (AFM). A strong and long-range attractive force was observed in pure water and was attributed to the formation of capillary bridges associated with nanoscale bubbles initially present on the hydrophobic surface. When NMP was added, the capillary force and corresponding pull-off force became less attractive, which was explained readily in terms of the surface wettability by the binary solvent mixture. Similar to the case of symmetric (two hydrophilic) surfaces, the range of attraction between the asymmetric surfaces was maximized at around 30 vol % NMP, which is consistent with the formation of a thick adsorbed macrocluster layer on the hydrophilic silica surface.  相似文献   

10.
A new sugar-derived tricatenar catanionic surfactant (TriCat) was developed to obtain stable vesicles that could be exploited for drug encapsulation. The presence of the sugar moiety led to the formation of highly hydrophilic stoichiometric catanionic surfactant systems. The three hydrophobic chains permitted vesicles to form spontaneously. The self-assembly properties (morphology, size, and stability) of TriCat were examined in water and in buffer solution. Encapsulation studies of a hydrophilic probe, arbutin, commonly used in cosmetics for its whitening properties, were performed to check the impermeability of the vesicle bilayer. The enhancement of hydrophobic forces by the three chains of TriCat prevented surfactant equilibrium between the bilayer and the solution and enabled the probe to be retained in the aqueous cavity of the vesicles for at least 30 h. Thus, the present study suggests that this tricatenar catanionic surfactant could be a promising delivery system for hydrophilic drugs.  相似文献   

11.
We report the study on the unique driving forces of the self-assembly of fully hydrophilic, soluble {Mo72Fe30} macroanions into single-layer, vesicle-like "blackberry" structures in water and mixed solvents. The hydrophobic interaction that is responsible for the vesicle formation of amphiphilic surfactants does not contribute to the current blackberry formation because of the absence of hydrophobic moiety. The hydrogen bond, van der Waals force, and chemical interaction only play minor roles. Laser light scattering and conductance measurements on a series of {Mo72Fe30}/ethanol/H2O solutions show that a certain amount of negative charges are necessary for the self-assembly, clearly indicating the existence of long-range attraction between macroanions, presumably due to the small counterions in between. The experimental results suggest that the charges on macroanions play a dual effect: short-range electrostatic repulsion and long-range "like-charge attraction", which is the major source of attractive force between hydrophilic macroanions, while van der Waals force, hydrogen bonds, and temporary inter-{Mo72Fe30} Fe-O-Fe chemical linking may also have minor contributions.  相似文献   

12.
This review covers the effects of hydrophobic counterions on the phase behavior of ionic surfactants and the properties of the phases. Mixing hydrophobic counterions with ionic surfactant micellar solutions may initiate the micellar growth and transform the micellar microstructure into different morphologies. This behavior may also be achieved by mixing ionic surfactants with hydrophilic counterions, although higher counterionic concentrations are then required. First, the role of hydrophilic and hydrophobic counterions in regards to micelle growth is discussed. Second, the effect of the hydrophobic counterion on the self-assembly of cationic and anionic surfactants and their viscoelastic behavior are presented. Third, the relationships between geometry, hydrophobicity and their consequences on micellar growth for different hydrophobic counterions are reviewed. Forth, the influence of hydrophobic counterion substituents (substitution pattern) on the phase behavior is discussed. Some results we previously obtained for different isomers of hydroxy naphthaoic acids and the cationic surfactant cetyltrimethylammonium hydroxide are included. With these systems the effect that the hydrophobic counterion microenvironment has on the phase behavior, rheological behavior and the micellar microstructure is discussed. The results from other research groups are also discussed.  相似文献   

13.
Vesicular assembly from a thermo-responsive amphiphilic random copolymer is reported. Vesicle-to-micelle transition above a critical morphology transition temperature (CMTT) resulted in selective triggered release of encapsulated hydrophilic guests over hydrophobic ones. The aggregation pattern of a control polymer indicated a defined role of the methacrylamide groups in the polymer backbone for such unprecedented self-assembly from a simple polymer.  相似文献   

14.
A novel approach for the fluidic self-assembly (FSA) of microparts in a multibatch process utilizing the thermal behavior of the carrier fluid as a means for selecting binding sites is presented. In the system studied, fluidic assembly takes place due to a capillary bridge between hexadecane deposited on a hydrophobic patch on a substrate and a hydrophobic surface on a micropart suspended in a carrier fluid. When desired, FSA of microparts is prevented by causing the surrounding carrier fluid to form a gel when heated, offering a method for directing self-assembly to sites that are not heated. It is shown that a suitable carrier fluid is 15 wt % Pluronic F127, which gels at about 40 degrees C when tested in the geometry used to demonstrate the concept. Experimental results demonstrating FSA and thermally controlled fluidic assembly (TCFSA) of plastic microparts dispersed in Pluronic F127 solution are presented. Potentially, TCFSA offers a general method for directed assembly as it relies on restricting the transport of microparts to a site rather than interfering with the fundamental attractive forces responsible for self-assembly.  相似文献   

15.
This letter demonstrates the first utilization of surface tension based self-assembly on the 200 nm scale to form mechanically stable aggregates comprised of metallic rods. The self-assembly occurs as a result of the minimization of interfacial tension of liquid layers of a hydrophobic polymerizable adhesive that is precipitated on the rods. After the assembly, the adhesive is polymerized to form permanently bonded aggregates. Depending on the patterning of the rods and the chemical functionalization used, either closed 3D bundles or open 2D networks can be formed.  相似文献   

16.
Cobaltabisdicarbollide (COSAN) anions have an unexpectedly rich self-assembly behavior, which can lead to vesicles and micelles without having a classical surfactant molecular architecture. This was rationalized by the introduction of new terminology and novel driving forces. A key aspect in the interpretation of COSAN behavior is the assumption that the most stable form of these ions is the transoid rotamer, which lacks a “hydrophilic head” and a “hydrophobic tail”. Using implicit solvent DFT calculations and MD simulations we show that in water, 1) the cisoid rotamer is the most stable form of COSAN and 2) this cisoid rotamer has a well-defined hydrophilic polar region (“head”) and a hydrophobic apolar region (“tail”). In addition, our simulations show that the properties of this rotamer in water (interfacial affinity, micellization) match those expected for a classical surfactant. Therefore, we conclude that the experimental results for the COSAN ions can now be understood in terms of its amphiphilic molecular architecture.  相似文献   

17.
We show that a two-step process, involving spontaneous self-assembly of lipids and apolipoproteins and surface patterning, produces single, supported lipid bilayers over two discrete and independently adjustable length scales. Specifically, an aqueous phase incubation of DMPC vesicles with purified apolipoprotein A-I results in the reconstitution of high density lipoprotein (rHDL), wherein nanoscale clusters of single lipid bilayers are corralled by the protein. Adsorption of these discoidal particles to clean hydrophilic glass (or silicon) followed by direct exposure to a spatial pattern of short-wavelength UV radiation directly produces microscopic patterns of nanostructured bilayers. Alternatively, simple incubation of aqueous phase rHDL with a chemically patterned hydrophilic/hydrophobic surface produces a novel compositional pattern, caused by an increased affinity for adsorption onto hydrophilic regions relative to the surrounding hydrophobic regions. Further, by simple chemical denaturation of the boundary protein, nanoscale compartmentalization can be selectively erased, thus producing patterns of laterally fluid, lipid bilayers structured solely at the mesoscopic length scale. Since these aqueous phase microarrays of nanostructured lipid bilayers allow for membrane proteins to be embedded within single nanoscale bilayer compartments, they present a viable means of generating high-density membrane protein arrays. Such a system would permit in-depth elucidation of membrane protein structure-function relationships and the consequences of membrane compartmentalization on lipid dynamics.  相似文献   

18.
As a preliminary study, self-assembly behaviors of heterogemini surfactant in aqueous solution are explored tentatively by means of dissipative particle dynamics simulation. Five kinds of heterogemini molecules are involved, and a variety of novel morphologies have been obtained. Results based on detailed comparisons among themselves and with traditional symmetric gemini surfactant show the proportion of hydrophilic to hydrophobic chain lengths in one monomer is the most important, more difference between proportions in the two monomers can induce more diverse self-assembly morphologies. The second important is the hydrophilic chain length, in which a small change can lead to obvious difference in self-assembly behaviors. While the length of hydrophobic chain has a less important influence, only the concentration for self-assembly morphologies appearing can be affected by its change. The microscopic morphology of heterogemini surfactant in its self-assembly structure can be embodied through its radius of gyration. Our simulation results can undoubtedly provide a theoretical guide to further research towards self-assembly behaviors of heterogemini surfactants and practical applications of these matters.  相似文献   

19.
New methods to direct the self-assembly of particles are highly sought after for multiple applications, including photonics, electronics, and drug delivery. Most techniques, however, are limited to chemical patterning on spherical particles, limiting the range of possible structures. We developed a lithographic technique for fabrication of chemically anisotropic rod-like particles in which we can specify both the size and shape of particles and implement multiple diverse materials to control interfacial interactions. Multiphase rod-like particles, including amphiphilic diblock, triblock, and multiblock were fabricated in the same template mold having a tunable hydrophilic/hydrophobic ratio. Self-assembly of diblock or triblock rods at a water/oil interface led to the formation of bilayer or ribbon-like structures.  相似文献   

20.
Zein is an amphiphilic protein capable of self-assembly into microspheres. Zein microspheres may form by evaporation-induced self-assembly (EISA) of zein solutions in ethanol/water. The formation of microspheres is of particular interest for the development of delivery systems. Zein solutions in ethanol/water 75?% (v/v) were slowly evaporated to promote self-assembly of microspheres. The ethanol content of the solvent decreased during EISA changing solvent polarity which induced self-assembly of zein particles. The growth of zein spheres was modeled from the hydrophobic and hydrophilic contributions to the interfacial free energy (R 2?=?0.92). The good fit indicated that during EISA zein microspheres increased in size due to hydrophobic interactions between zein molecules. The model may allow the prediction of evaporation time and thus control over microsphere size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号