首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wang  Ling  Zhao  Hongyong  Sha  Chunlin 《Nonlinear dynamics》2018,92(3):1197-1215
Nonlinear Dynamics - In this paper, a delayed neural network with reaction–diffusion and coupling is considered. The network consists of two sub-networks each with two neurons. In the first...  相似文献   

3.
Wei  Tengda  Li  Xiaodi  Stojanovic  Vladimir 《Nonlinear dynamics》2021,103(2):1733-1755

In this paper, we focus on the global existence–uniqueness and input-to-state stability of the mild solution of impulsive reaction–diffusion neural networks with infinite distributed delays. First, the model of the impulsive reaction–diffusion neural networks with infinite distributed delays is reformulated in terms of an abstract impulsive functional differential equation in Hilbert space and the local existence–uniqueness of the mild solution on impulsive time interval is proven by the Picard sequence and semigroup theory. Then, the diffusion–dependent conditions for the global existence–uniqueness and input-to-state stability are established by the vector Lyapunov function and M-matrix where the infinite distributed delays are handled by a novel vector inequality. It shows that the ISS properties can be retained for the destabilizing impulses if there are no too short intervals between the impulses. Finally, three numerical examples verify the effectiveness of the theoretical results and that the reaction–diffusion benefits the input-to-state stability of the neural-network system.

  相似文献   

4.
Ahmed  Nauman  Elsonbaty  Amr  Raza  Ali  Rafiq  Muhammad  Adel  Waleed 《Nonlinear dynamics》2021,106(2):1293-1310
Nonlinear Dynamics - In this study, a novel reaction–diffusion model for the spread of the new coronavirus (COVID-19) is investigated. The model is a spatial extension of the recent COVID-19...  相似文献   

5.
In this paper, a model for a network of neurons with reaction–diffusion is investigated. By analyzing the linear stability of the system, Hopf bifurcation and Turing unstable conditions are obtained. Based on this, standard multiple-scale analysis is used for deriving the amplitude equations of the model for the excited modes in the Turing bifurcation. Moreover, the stability of different patterns is also determined. The obtained results enrich the dynamics of neurons’ network system.  相似文献   

6.
Qintao Gan 《Nonlinear dynamics》2012,69(4):2207-2219
In this paper, the problem of exponential synchronization is investigated for a class of stochastic perturbed chaotic neural networks with both mixed time delays and reaction?Cdiffusion terms. By employing Lyapunov?CKrasovskii functional and stochastic analysis approaches, an adaptive controller is designed to guarantee the exponential synchronization of proposed neural networks in the mean square. In particular, the mixed time delays in this paper synchronously consist of constant delay in the leakage term (i.e., ??leakage delay??), discrete time-varying delay and distributed time-varying delay which are more general than those discussed in the previous literature. Furthermore, our synchronization criteria are easily verified and do not need to solve any linear matrix inequality. Therefore, the results obtained in this paper generalize and improve those given in the previous literature. Finally, the extensive simulations are performed to show the effectiveness and feasibility of the obtained method.  相似文献   

7.
8.
In this note, we give constructive upper and lower bounds for the minimal speed of propagation of traveling waves for a nonlocal delayed reaction–diffusion equation.  相似文献   

9.
The active control approach generally requires power input to suppress vibrations of structures, while the conventional passive manner often causes waste of energy after transferring vibrations of the primary structure to the auxiliary system. In this work, an innovative control strategy based on energy harvesting for efficiently suppressing the cross-flow-induced vibrations such as galloping is proposed. The novel design facilitates the harvester of not only alleviating the oscillation of the primary structure but also seizing the transferred vibrational energy. An analytical model for the coupled nonlinear dynamical system is established by utilizing the Euler–Lagrange principle and implementing the Galerkin discretization. The impacts of the electrical load resistance and tip mass of the energy harvester on the coupled frequency, damping, and the onset speed of instability of the coupled multi-mode system are investigated in details. The results show that there exists an optimal load resistance for each tip mass which maximizes the onset speed of galloping. For control purposes, it is found that there is a well-defined tip mass of the energy harvester at which the coupled system has the highest onset speed of instability, and hence, the bluff body has the lowest vibration amplitude for all considered load resistances. However, to efficiently harvest energy and control the bluff body, both the tip mass of the energy harvester and electrical load resistance can be accurately determined.  相似文献   

10.
11.
Chen  Wu-Hua  Liu  Lijun  Lu  Xiaomei 《Nonlinear dynamics》2017,87(1):535-551
Nonlinear Dynamics - This paper revisits the exponential synchronization problem of two identical reaction–diffusion neural networks with Dirichlet boundary conditions and mixed delays via...  相似文献   

12.
Luo  Shixian  Deng  Feiqi  Chen  Wu-Hua 《Nonlinear dynamics》2017,88(4):2899-2914
Nonlinear Dynamics - This paper investigates the problems of pointwise-in-space stabilization and synchronization of semilinear reaction–diffusion systems with Dirichlet boundary conditions...  相似文献   

13.
This paper studies the problem of mean square asymptotical synchronization and \(H_\infty \) synchronization for coupled stochastic reaction–diffusion systems (SRDSs) via boundary control. Based on the deduced synchronization error dynamic, we design boundary controllers to achieve mean square asymptotical synchronization. By virtue of Lyapunov functional method and Wirtinger’s inequality, sufficient conditions are obtained for ensuring mean square asymptotical synchronization. When coupled SRDSs are subject to external disturbance, mean square \(H_\infty \) synchronization is investigated and corresponding criterion is presented under a designed boundary controller. In addition to focusing on systems with Neumann boundary conditions, we also briefly study coupled SRDSs with mixed boundary conditions and sufficient conditions are provided to achieve the desired performance. Numerical examples are used to verify the effectiveness of our theoretical results.  相似文献   

14.
15.
16.
The Extended Thermodynamic theory is used to derive a hyperbolic reaction–diffusion model for Chemotaxis. Linear stability analysis is performed to study the nature of the equilibrium states against uniform and nonuniform perturbations. A particular emphasis is given to the occurrence of the Turing bifurcation. The existence of traveling wave solutions connecting the two steady states is investigated and the governing equations are numerically integrated to validate the analytical results. The propagation of plane harmonic waves is analyzed and the stability regions in terms of the model parameters are shown. The frequency dependence of the phase velocity and of the attenuation is also illustrated. Finally, in order to have a measure of the non linear stability, the propagation of acceleration waves is studied, the wave amplitude is derived and the critical time is evaluated.  相似文献   

17.
A reaction–diffusion ecoepidemic model of predator–prey type with a transmissible disease spreading among the predator species only is considered. The longtime behavior of solutions is analyzed and, in particular, absorbing sets in the phase space are determined. Conditions guaranteeing the non existence of non-constant equilibria have been found. Linear and non-linear stability conditions for biologically meaningful equilibria are determined.  相似文献   

18.
Using physical experiments we investigated the evolution of thermally driven melt patterns in a semi-infinite solid crystalline phase subjected to uniform heating from one side, maintaining melting temperature. We treat the melt initiation phenomenon theoretically in the perspective of two-phase interactions on the microscopic level, and propose a new reaction–diffusion model based on the preypredator dynamics. This model predicts the fractal behavior of melt fronts observed in the experiments.  相似文献   

19.
We study the global-in-time behavior of solutions to a reaction–diffusion system with mass conservation, as proposed in the study of cell polarity, particularly, the second model of the work by Otsuji et al. (PLoS Comput Biol 3:e108, 2007). First, we show the existence of a Lyapunov function and confirm the global-in-time existence of the solution with compact orbit. Then we study the stability and instability of stationary solutions by using the semi-unfolding-minimality property and the spectral comparison. As a result the dynamics near the stationary solutions is qualitatively characterized by a variational function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号