首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new rigid rod-like molecules consisting of a dibenzosilole core, ethynylene linkages, and different aryl end-groups has been synthesized by palladium-catalyzed Sonogashira cross-coupling reactions. These compounds exhibit intense blue to green emissions with high quantum efficiencies and good thermal stabilities.  相似文献   

2.
Liquid properties such as dielectric relaxation and viscous flow of the two structurally homologous propylene glycol oligomers HO(CH(CH3)CH2O)nH (n=1, 2, 3, 4, 5 and 34) and ethylene glycol oligomers HO(C2H4O)nH (n=1, 2, 3, 4, 5 and 6) are studied in pure liquid state to clarify the degree of polymerization dependences of chain molecules on their liquid properties. These oligomers are, at room temperature, viscous liquid which shows dielectric relaxations in the frequency range from 10 Hz to 3 MHz. Propylene glycol oligomers (n=from 1 to 5) show the Davidson-Cole-type relaxations, but the higher glycol (n=34) shows superposition of the two different relaxations, i. e., small Debye-type relaxation in the lower-frequency region and large principal Havriliak-Negami-type relaxation in the higher-frequency region. Relaxation times vs. degree of polymerization do not increase linearly, but vary in zigzag lines. Above all, the dimers (dipropylene glycol and diethylene glycol) show longer relaxation times than the other glycols. This dielectric result does not agree with the degree of polymerization dependence of viscous flow.  相似文献   

3.
A series of oligothienylenevinylenes, pi-conjugated oligomers rigidified by ethylene bridges attached at different sites of the conjugated backbone, have been constructed by multistep synthetic methodologies. Electronic absorption spectra show that the rigidification of the conjugated system produces a bathochromic shift of the absorption maximum and a narrowing of the HOMO-LUMO energy gap, as compared to the spectra of an open-chain reference compound. The cyclic voltammograms of all oligomers show that these compounds can be reversibly oxidized into their cation radicals and dications and that rigidification produces a large negative shift of the first oxidation potential, which is indicative of a considerable increase of the HOMO level. Electrochemical data confirm that covalent bridging strongly affects the HOMO and LUMO levels and these data demonstrate that the sites of fixation of the bridges on the pi-conjugated backbone exert a determining effect on the relative stability of the cation radical and dication. Examination of these various results in the light of theoretical calculations shows that in addition to a local control of bond length alternation, and hence of the HOMO-LUMO gap, the fixation of covalent bridges at selected positions of the pi-conjugated system limits the deformation of the pi-conjugated structure upon oxidation to the charged states.  相似文献   

4.
Two tribranched chromophores,1,3,5-triazine as electron deficient core,9,9-dimethylfluorene asπ-conjugated bridge, diphenylamino(4a) and naphthylamino(4b) as electron-donating end-groups,were successfully prepared via Buchwald-Hartwig coupling reaction.Their linear photophysical and two-photon absorption(TPA) properties were investigated by absorption, fluorescence and nonlinear transmission method,respectively.The absorption cut-offs of the chromophores are below 550 nm and both chromophores have strong fluorescence emission.The compound 4a(206.3 GM) exhibits larger TPA cross-section than 4b (57.8 GM) in the femtosecond regime at 800 nm.  相似文献   

5.
The first and second hyperpolarizability beta and gamma are obtained for formaldehyde oligomers (H2CO)n (n = 1-7) using computational methods. We have used the finite field (FF) approach and hyperpolarizability density analysis (HDA) to predict the microscopic first and second nonlinear hyperpolarizability of the formaldehyde oligomers. The spatial contributions of electrons to the hyperpolarizability by using plots of HDA are presented. It has been found from the numerical stability checking of the hyperpolarizability calculations that the calculated values by FF method are more stable than those by HDA approach. The values of beta are zero when n is even as the molecule possesses centrosymmetry, and when n is odd, the differences among beta values are not clear. The gamma values are increased with increase in n.  相似文献   

6.
Fluoroalkanoyl peroxides were reacted with adamantane in the presence of radical polymerizable monomers such as acrylic acid, acryloylmorpholine, and N,N‐dimethylacrylamide to afford fluoroalkyl end‐capped oligomers having adamantane units in the main chains via a radical process under very mild conditions. Thermal stability of these new fluorinated adamantane co‐oligomers thus obtained became higher than that of the corresponding fluorinated homo‐oligomers having no adamantane units. Interestingly, these fluorinated adamantane co‐oligomers exhibited good solubility in traditional organic solvents such as methanol, ethanol, tetrahydrofuran, chloroform, benzene, dimethylsulfoxide and N,N‐dimethylformamide including water, although the parent adamantane exhibited no solubility in water, methanol and dimethylsulfoxide. Furthermore, these adamantane co‐oligomers were able to reduce the surface tension effectively to form the nanometer size‐controlled self‐assembled fluorinated molecular aggregates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A series of oligo(phenylenevinylene)s (OPVs) of different lengths containing aldehyde and dialdehyde groups on the ends were synthesized and characterized. Their photophysical properties were also investigated via ultraviolet–visible, steady‐state, and time‐resolved fluorescence spectra. The results indicated that the absorption maximum, radiative rate constant, and excitation maximum of an OPVnCHO oligomer series (where n represents the oligomeric length) showed linear relationships with the reciprocal number of conjugated units. Similarly, the absorption maximum and emission lifetime of the oligomers of an OPVn–2CHO series showed linear relationships with the reciprocal number of conjugated units. The dependence of the fluorescence intensities of the OPVs on the concentration of the quencher C60 was evaluated. Apparently, upon photoexcitation, the OPVs underwent significant fluorescence quenching. The results for different OPV derivatives and a quenching mechanistic discussion showed that the static quenching contribution was indeed responsible for the significant upward curvature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 911–924, 2007  相似文献   

8.
9.
Styrene oligomers, preferentially consisting of styrene dimers and trimers, are formed by a free radical mechanism at the thermal polymerization of stabilizer-free styrene during storage and at higher polymerization temperatures. The identity of several dimer and trimer fractions formed in such a free radical polymerization, their influence on a coordinative polymerization reaction, the syndiospecific polymerization of styrene, as well as their effect on the properties of the resulting polymers has been investigated.Styrene dimers and styrene trimers reduce the polymerization activity of the transition metal catalyst significantly, especially at low amounts of oligomers added to the styrene. This behavior is discussed with respect to a proposed mechanism involving complexation of the active transition metal species with the specific oligomer instead of the styrene monomer, resulting in increased steric hindrance towards insertion of a styrene molecule to the active site.Both oligomers reduce the molecular weight of the syndiotactic polystyrene, by acting as chain-transfer agents. The constancy of the polydispersity over the whole concentration range of added dimer or trimer indicates that the uniformity of the active sites of the coordinative polymerization is not significantly influenced by the presence of the oligomers.The thermal properties of the polymers demonstrate that the oligomers do not affect the high syndiospecificity of the active catalytic sites, whereas the increase in crystallization temperature with increasing amounts of styrene dimer or trimer is comparable to effects observed by the addition of crystallization nucleators to semicrystalline polymers.  相似文献   

10.
The modification of nanocomposite coatings with fillers having unique characteristics in the polymeric matrix is a promising strategy to enhance the durability as well as to prevent the growth of microorganisms that decrease the stability of the materials. This study was conducted to evaluate the rheological and antimicrobial behavior of epoxy-based nanocomposite coatings filled with nanosilica, titanium oxide (TiO2) and zinc oxide (ZnO) against Staphylococcus aureus and Escherichia coli. A rheometer was used for characterizing the rheological properties of the various fillers embedded epoxy nanocomposite coatings. All of the composites inhibited the growth of Staphylococcus aureus and Escherichia coli on modified Kirby Bauer antimicrobial testing, only when they are in contact with samples. Upon quantitative analysis, bioactive constituent dependent antimicrobial activity was observed which increased with the exposure of contact times. The epoxy/silica/TiO2/ZnO (ESTZ) coating showed the highest bacterial reduction of more than 95% for 4 h of treatment. The bioactivity was decreased for the case of epoxy/silica/ZnO (ESZ) or epoxy/silica/TiO2 (EST). The combined effect of the nanosilica, TiO2, and ZnO shows the highest performance in terms of stress, viscosity and torque compared to the individual effect of these three fillers onto the epoxy. Results showed that the shear stress of ESZ, EST, epoxy/silica (ES), and ESTZ coating was increased by 4.4%, 7.7%, 32.2%, and 42%, respectively, compared to the neat epoxy (NE) coating. The torque versus strain curve also showed that the torque of ESTZ composites was the highest (0.52 mN m) compare to NE (0.36 mN m), ESZ (0.38 mN m), EST (0.40 mN m), and ES (0.45 mN m). The studies indicate that the epoxy-based thermoset nanocomposite coatings can be utilized as bactericidal surfaces for the industrial and medical purpose to reduce microbial growth.  相似文献   

11.
Addition of carbon nanotubes (CNT) to Graphene (Gr) is seen to have synergistic effect as reinforcement to polymer matrix. This is possible as CNTs inhibit stacking of Gr sheets, thus providing larger surface area nanophase to get bonded with polymer matrix and providing mechanical support through load sharing and crack growth inhibition. However, tube like morphology and high aspect ratio of CNT often lead to entanglement, which restricts their effect in exfoliating Gr. The aim of the present study is to investigate the potential of ND in improving the synergistic effect of Gr-CNT hybrid as a reinforcement to epoxy matrix. This study utilizes the power of ultrasonication technique, which is very simple and scalable, for dispersing and incorporating nanofillers into epoxy matrix. Addition of ND to Gr-CNT epoxy composite improved the tensile strength from ~46% with 0.5 wt% (75Gr:25ND) to ~51% with 0.8 wt% (25Gr:25CNT:50ND) as compared to neat epoxy. While the fracture toughness improved from ~140% with 0.5 wt% (25Gr:75CNT) to 165% with 0.8 wt% (25Gr:50CNT:25ND). Fractured surfaces of composites revealed improved dispersion and strong interfacial interaction with addition of ND to Gr-CNT hybrid. NDs attaches to the surface of Gr inhibit the stacking of Gr sheets by restricting π-π stabilization. NDs also help in bridging the ends of CNTs together into long chains, thereby increasing the aspect ratio of the fiber like reinforcement. This increases the total available surface area of CNTs and Gr, to interact with epoxy matrix, improves the overall efficiency of Gr-CNT hybrid as a reinforcement, resulting into improvement in mechanical properties of the composite structure.  相似文献   

12.
Theoretical Study on the Mechanism of Sonogashira Coupling Reaction   总被引:1,自引:1,他引:0  
The mechanism of palladium-catalyzed Sonogashira cross-coupling reaction has been studied theoretically by DFT (density functional theory) calculations. The model system studied consists of Pd(PH3)2 as the starting catalyst complex, phenyl bromide as the substrate and acetylene as the terminal alkyne, without regarding to the co-catalyst and base. Mechanistically and energetically plausible catalytic cycles for the cross-coupling have been identified. The DFT analysis shows that the catalytic cycle occurs in three stages: oxidative addition of phenyl bromide to the palladium center, alkynylation of palladium(Ⅱ) intermediate, and reductive elimination to phenylacetylene. In the oxidative addition, the neutral and anionic pathways have been investigated, which could both give rise to cis-configured palladium(Ⅱ) diphosphine intermediate. Starting from the palladium(Ⅱ) diphosphine intermediate, the only identifiable pathway in alkynylation involves the dissociation of Br group and the formation of square-planar palladium(Ⅱ) intermediate, in which the phenyl and alkynyl groups are oriented cis to each other. Due to the close proximity of phenyl and alkynyl groups, the reductive elimination of phenylacetylene proceeds smoothly.  相似文献   

13.
The synthesis, optical, and electrochemical properties of semi-conducting co-oligomers of biphenyl/oligothiophenes and homo-oligophenylenes derived from a precursor 4-bromo-4-(n-butyl)-2,2-biphenyl, which was synthesized by a direct alkylation from 4,4-dibromo-2,2-biphenyl using n-butyl lithium, are reported.  相似文献   

14.
The aim of this work is to improve the performance of natural rubber reinforced with a hybrid of pineapple leaf fiber with carbon black. When there are multiple components to be mixed into a rubber matrix, mixing can be carried out in more than one way. Thus, in this study, the effects of preparation method and the resulting carbon black distribution on the mechanical properties of the hybrid composite were evaluated. Pineapple leaf fiber (PALF) and carbon black contents were fixed at 10 parts (by weight) and 30 parts (by weight) per hundred parts of rubber (phr), respectively. In order to improve the dispersion, PALF with rubber was prepared as a masterbatch. Carbon black was added to the compound either as a single portion or as two separate portions, one in the PALF masterbatch and the other in the main mixing step. It was found that, despite using the same final compound formulation, the mixing scheme significantly affected the medium strain region of the vulcanizate stress-strain curve. No stress drop in this strain region was observed for the two-step mixing scheme. Models for composites with different preparation methods are proposed and discussed.  相似文献   

15.
The influence of counterions on the calculated properties of positively charged pyrrole oligomers is studied using the semiempirical AM1 and PM3 methods. The geometry and properties of the charged pyrrole oligomers are significantly affected by counteranions both in anti and syn conformations. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem 88: 296–301, 2002  相似文献   

16.
In this study, the formation of silica–chitosan hybrid materials via sol–gel process under pH values of 2–6 were investigated using N2 sorption analysis, scanning electron microscopy, transmission electron microscopy, thermal analysis and zeta potential analyzer. The hierarchical structure consisting of meso- and macropore was formed when pH value was higher than 2. Mesopores were formed as the interparticle channels of silica nanoparticles aggregates, whereas macropores were the void between the aggregates (clusters). The clusters size was decreased with increasing the pH value, resulting in the increase of the macroporosity. The thermal conductivity of the products was controlled in the range of 0.06 and 0.13 W m−1 K−1 by varying the product porosity between 88 and 69% (pH 6 and pH 2, respectively).  相似文献   

17.
Condensation of oligo‐4‐hydroxybenzaldehyde with aniline, 2‐chloroaniline, 2‐aminophenol, 2‐aminotoluene, 4‐aminotoluene, and 4‐nitroaniline gave the corresponding Schiff base oligomers (OFAP, OKAP, OHAP, OOAP, OTAP, and ONAP, respectively). The products were characterized by 1H NMR, Fourier transform infrared, ultraviolet–visible, and elemental analyses. The number‐average molecular weight, mass‐average molecular weight, and polydispersity index (PDI) values of the Schiff base oligomers were determined. Thermogravimetric analysis was used to compare the thermal stability of the oligomers, which showed the Schiff base oligomers to be resistant to thermooxidative decomposition. Weight loss of 5% and 50% occurred at temperatures of 122 and 475 °C; for OFAP, at 118 and 453 °C; for OKAP, at 182 and 491 °C; for OHAP, at 150 and 452 °C; for OOAP, at 132 and 401 °C; for OTAP, and at 193 and 414 °C for ONAP. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1120–1125, 2004  相似文献   

18.
19.
LDPE films have been coated with single or bi-layer hybrid coatings formed through sol-gel reactions in order to improve their thermo-oxidative resistance. Different chemical compositions of the coating were investigated which differ either in the amount of the inorganic phase (silica deriving from tetraethoxysilane) or in the organic component (either alkoxy silane functionalized polyethylene-poly(ethylene glycol) diblock copolymers or poly(vinyl alcohol)). The thermo-oxidative stability of the coated films thus obtained has been assessed by means of isothermal differential scanning calorimetry (DSC) and isothermal thermo-gravimetric analysis (TGA) under accelerated conditions, i.e. at high temperatures in pure oxygen flow. Conventional ageing in air at lower temperature, slightly above the in-service one, has also been carried out. The obtained data show: a) a general improvement of the thermal-resistance for the coated LDPE samples; b) a particularly high thermal-resistance for LDPE coated with a bi-layer coating with pure silica in the top layer; c) the effectiveness of the accelerated techniques in qualitatively assessing the thermo-oxidative resistance of the coated polymeric systems.  相似文献   

20.
Copolymers of (R)-3-hydroxybutyrate (3HB) and (R)-lactate ((R)-2-hydroxypropionate: 2HP) units were synthesized by polycondensation reaction from methyl esters of 3HB and 2HP in the presence of titanium-based catalyst. Mixing of two monomers from the beginning of polymerization yielded random copolymers of 3HB and 2HP units. On the other hand, by controlling the time of mixing of two monomers, copolymers with blocking tendency were obtained. The structure and thermal properties of the obtained copolymers were characterized by 1H and 13C NMR, X-ray diffraction, differential scanning calorimetry, and optical microscopy. Glass-transition temperature of the copolymers was mainly governed by the copolymer composition, and the values varied linearly with the composition. In contrast, the melting temperature was strongly depending on the sequential length of crystallizable monomeric unit, and the values were in inverse proportion to the number-averaged sequential length of crystallizable monomeric unit. The crystallinity of the copolymer samples was affected by both the composition and sequential length of crystallizable monomeric unit. The finding is valuable for design of copolymer molecules with desirable thermal properties by controlling both the copolymer composition and sequential structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号