首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quality‐by‐design‐based methods hold greater level of confidence for variations and greater success in method transfer. A quality‐by‐design‐based ultra high performance liquid chromatography method was developed for the simultaneous assay of sumatriptan and naproxen along with their related substances. The first screening was performed by fractional factorial design comprising 44 experiments for reversed‐phase stationary phases, pH, and organic modifiers. The results of screening design experiments suggested phenyl hexyl column and acetonitrile were the best combination. The method was further optimized for flow rate, temperature, and gradient time by experimental design of 20 experiments and the knowledge space was generated for effect of variable on response (number of peaks ≥ 1.50 – resolution). Proficient design space was generated from knowledge space by applying Monte Carlo simulation to successfully integrate quantitative robustness metrics during optimization stage itself. The final method provided the robust performance which was verified and validated. Final conditions comprised Waters® Acquity phenyl hexyl column with gradient elution using ammonium acetate (pH 4.12, 0.02 M) buffer and acetonitrile at 0.355 mL/min flow rate and 30°C. The developed method separates all 13 analytes within a 15 min run time with fewer experiments compared to the traditional quality‐by‐testing approach.  相似文献   

2.
The present work describes the systematic development of a robust, precise, and rapid reversed‐phase liquid chromatography method for the simultaneous determination of eprosartan mesylate and its six impurities using quality‐by‐design principles. The method was developed in two phases, screening and optimization. During the screening phase, the most suitable stationary phase, organic modifier, and pH were identified. The optimization was performed for secondary influential parameters—column temperature, gradient time, and flow rate using eight experiments—to examine multifactorial effects of parameters on the critical resolution and generated design space representing the robust region. A verification experiment was performed within the working design space and the model was found to be accurate. This study also describes other operating features of the column packed with superficially porous particles that allow very fast separations at pressures available in most liquid chromatography instruments. Successful chromatographic separation was achieved in less than 7 min using a fused‐core C18 (100 mm × 2.1 mm, 2.6 μm) column with linear gradient elution of 10 mM ammonium formate (pH 3.0) and acetonitrile as the mobile phase. The method was validated for specificity, linearity, accuracy, precision, and robustness in compliance with the International Conference on Harmonization Q2 (R1) guidelines. The impurities were identified by liquid chromatography with mass spectrometry.  相似文献   

3.
《Electrophoresis》2017,38(9-10):1353-1365
Capillary and microfluidic chip electrophoresis technologies are heavily utilized for development, characterization, release, and stability testing of biopharmaceuticals. Within the biopharmaceutical industry, CE‐SDS and M‐CGE are commonly used for purity determination by separation and quantitation of size‐based variants. M‐CGE is used primarily as an R&D tool for product and process development, while cGMP release and stability testing applications are commonly reserved for CE‐SDS. This paper describes the establishment of an M‐CGE platform method to be used for R&D and cGMP applications, including release and stability testing, for monoclonal antibodies. The M‐CGE platform method enables testing for product development support and cGMP release and stability using the same method, and utilization of one CE technology for the entire lifecycle of a biopharmaceutical product. Critical method parameters were identified, and the analytical design space of those critical parameters was defined using design of experiments (DOE) studies. Once defined through DOE studies, the method design space was validated according to ICH Q2 (R1) guidelines. Additional molecules of the same validated class were verified for use in the method by experimental confirmation of accuracy, specificity, and stability indicating capabilities. The platform method model facilitates rapid utilization of the method in development and GMP testing environments, and eliminates the need for individual validations for assets of the same class entering early stage development.  相似文献   

4.
A Monte Carlo method was used to develop the design space of a chromatographic elution process for the purification of saponins in Panax notoginseng extract. During this process, saponin recovery ratios, saponin purity, and elution productivity are determined as process critical quality attributes, and ethanol concentration, elution rate, and elution volume are identified as critical process parameters. Quadratic equations between process critical quality attributes and critical process parameters were established using response surface methodology. Then probability‐based design space was computed by calculating the prediction errors using Monte Carlo simulations. The influences of calculation parameters on computation results were investigated. The optimized calculation condition was as follows: calculation step length of 0.02, simulation times of 10 000, and a significance level value of 0.15 for adding or removing terms in a stepwise regression. Recommended normal operation region is located in ethanol concentration of 65.0–70.0%, elution rate of 1.7–2.0 bed volumes (BV)/h and elution volume of 3.0–3.6 BV. Verification experiments were carried out and the experimental values were in a good agreement with the predicted values. The application of present method is promising to develop a probability‐based design space for other botanical drug manufacturing process.  相似文献   

5.
The design of an appropriate analytical method for assessing the quality of pharmaceuticals requires a deep understanding of science, and risk evaluation approaches are appreciated. The current study discusses how a related substance method was developed for Nintedanib esylate. The best possible separation between the critical peak pairs was achieved using an X-Select charged surface hybrid Phenyl Hexyl (150 × 4.6) mm, 3.5 μm column. A mixture of water, acetonitrile, and methanol in mobile phase-A (70:20:10) and mobile phase-B (20:70:10), with 0.1% trifluoroacetic acid and 0.05% formic acid in both eluents. The set flow rate, wavelength, and injection volumes were 1.0 ml/min, 285 nm, and 5 μl, respectively, with gradient elution. The method conditions were validated as per regulatory requirements and United States Pharmacopeia general chapter < 1225 >. The correlation coefficient for all impurities from the linearity experiment was found to be > 0.999. The % relative standard deviation from the precision experiments ranged from 0.4 to 3.6. The mean %recovery from the accuracy study ranged from 92.5 to 106.5. Demonstrated the power of the stability-indicating method through degradation studies; the active drug component is more vulnerable to oxidation than other conditions. Final method conditions were further evaluated using a full-factorial design. The robust method conditions were identified using the graphical optimization from the design space.  相似文献   

6.
A novel analytical quality by design approach for developing a chromatographic fingerprint was established for analyzing complex traditional Chinese medicine, using a licorice standard decoction as an example. Considering the characteristics of integrity and ambiguity, the resolution of eight common peaks, total peak number, capacity factor distributions, and peak purity were selected as potential critical method attributes for assessing the quality of the chromatographic fingerprint. A central composite design was used to evaluate the relationship between critical method attributes and critical method parameters, including column temperature, wavelength, flow rate, formic‐acid concentration, and gradient parameters. A standard probability method was employed to calculate the design space of the fingerprint analysis parameters and evaluate the robustness of the methodology. The optimized high‐performance liquid chromatography fingerprint conditions were acetonitrile and 0.1% formic acid water gradient elution (0‐5 min, 5–19% A; 5–10 min, 19% A; 10–50 min, 19–42% A; 50–54 min, 42–100% A; 54–60 min, 100% A), column temperature 25±5°C, detection wavelength 265 nm. The design space of fingerprint analytical method based on the analytical quality by design approach not only met the requirements of the fingerprint analysis, but also improved the robustness and applicability of the fingerprint method.  相似文献   

7.
An innovative methodology based on design of experiments (DoE), independent component analysis (ICA) and design space (DS) was developed in previous works and was tested out with a mixture of 19 antimalarial drugs. This global LC method development methodology (i.e. DoE-ICA-DS) was used to optimize the separation of 19 antimalarial drugs to obtain a screening method. DoE-ICA-DS methodology is fully compliant with the current trend of quality by design. DoE was used to define the set of experiments to model the retention times at the beginning, the apex and the end of each peak. Furthermore, ICA was used to numerically separate coeluting peaks and estimate their unbiased retention times. Gradient time, temperature and pH were selected as the factors of a full factorial design. These retention times were modelled by stepwise multiple linear regressions. A recently introduced critical quality attribute, namely the separation criterion (S), was also used to assess the quality of separations rather than using the resolution. Furthermore, the resulting mathematical models were also studied from a chromatographic point of view to understand and investigate the chromatographic behaviour of each compound. Good adequacies were found between the mathematical models and the expected chromatographic behaviours predicted by chromatographic theory. Finally, focusing at quality risk management, the DS was computed as the multidimensional subspace where the probability for the separation criterion to lie in acceptance limits was higher than a defined quality level. The DS was computed propagating the prediction error from the modelled responses to the quality criterion using Monte Carlo simulations. DoE-ICA-DS allowed encountering optimal operating conditions to obtain a robust screening method for the 19 considered antimalarial drugs in the framework of the fight against counterfeit medicines. Moreover and only on the basis of the same data set, a dedicated method for the determination of three antimalarial compounds in a pharmaceutical formulation was optimized to demonstrate both the efficiency and flexibility of the methodology proposed in the present study.  相似文献   

8.
An ultrafast liquid chromatographic bioanalytical method was developed and validated for the determination of telaprevir in Wistar albino rat serum. Principles of quality by design (QbD) were implemented for enhancing the bioanalytical liquid–liquid extraction of telaprevir from rat serum. A Box–Behnken design was utilized in the studies by selecting extraction time, centrifugation speed, and vortex time as the critical method variables for evaluating their effect on the critical analytical attribute, i.e., %recovery of telaprevir. Chromatographic separation was achieved within a run time of 10?min using a C-18 column and mobile phase comprising of methanol:borate buffer of pH 9 (90:10 v/v) flowing at 1.2?mL/min. Photodiode array detection was performed at 270?nm. Results of validation studies were satisfactory. The method was linear over a concentration of 25–10,000?ng/mL. Limit of detection for the developed method was 10?ng/mL. Further, design of experiments (DoE) used for inter-day accuracy and precision study suggested superior method reliability. This integrated QbD- and DoE-based approach ensured the development of a validated and reliable analytical method for optimum bioanalysis of telaprevir in biological matrix.  相似文献   

9.
A solvent-modified micellar electrokinetic chromatography method was set up for the simultaneous determination of the tricyclic antidepressant amitriptyline (AMI) and its main impurities. The method was developed following Quality by Design (QbD) principles according to ICH Guideline Q8(R2). QbD approach made it possible to find the design space (DS), where quality was assured. After a scouting phase, aimed at selecting a suitable capillary electrophoresis pseudostationary phase, risk assessment tools were employed to define the critical process parameters (CPPs) to be considered in a screening phase (applied voltage, concentration and pH of the background electrolyte, concentration of the surfactant sodium dodecyl sulphate, of the cosurfactant n-butanol and of the organic modifiers acetonitrile and urea). The effects of the seven selected CPPs on critical quality attributes (CQAs), namely resolution values between critical peak pairs and analysis time, were investigated throughout the knowledge space by means of a symmetric screening matrix. Response surface study was then carried out on four selected CPPs by applying a Doehlert Design. Monte-Carlo simulations were performed in order to estimate the probability of meeting the desired specifications on CQAs, and thus to define the DS by means of a risk of failure map. Additional points at the edges of the DS were tested in order to verify the requirements for CQAs to be fulfilled. A control strategy was implemented by defining system suitability tests. The developed method was validated following ICH Guideline Q2(R1), including robustness assessment by Plackett–Burman design, and was applied to the analysis of real samples of amitriptyline coated tablets.  相似文献   

10.
Dextromethorphan is a centrally acting antitussive drug, while its enantiomer levomethorphan is an illicit drug with opioid analgesic effects. As capillary electrophoresis has been proven as an ideal technique for enantiomer analysis, the present study was conducted in order to develop a capillary electrophoresis‐based limit test for levomethorphan. The analytical target profile was defined as a method that should be able to determine levomethorphan with acceptable precision and accuracy at the 0.1 % level. From initial scouting experiments, a dual selector system consisting of sulfated β‐cyclodextrin and methyl‐α‐cyclodextrin was identified. The critical process parameters were evaluated in a fractional factorial resolution IV design followed by a central composite face‐centered design and Monte Carlo simulations for defining the design space of the method. The selected working conditions consisted of a 30/40.2 cm, 50 μm id fused‐silica capillary, 30 mM sodium phosphate buffer, pH 6.5, 16 mg/mL sulfated β‐cyclodextrin, and 14 mg/mL methyl‐α‐cyclodextrin at 20°C and 20 kV. The method was validated according to ICH guideline Q2(R1) and applied to the analysis of a capsule formulation. Furthermore, the apparent binding constants between the enantiomers and the cyclodextrins as well as complex mobilities were determined to understand the migration behavior of the analytes.  相似文献   

11.
Validation of analytical methods is required prior to their routine use. In addition, the current implementation of the Quality by Design (QbD) framework in the pharmaceutical industries aims at improving the quality of the end products starting from its early design stage. However, no regulatory guideline or none of the published methodologies to assess method validation propose decision methodologies that effectively take into account the final purpose of developed analytical methods. In this work a solution is proposed for the specific case of validating analytical methods involved in the assessment of the content uniformity or uniformity of dosage units of a batch of pharmaceutical drug products as proposed in the European or US pharmacopoeias. This methodology uses statistical tolerance intervals as decision tools. Moreover it adequately defines the Analytical Target Profile of analytical methods in order to obtain analytical methods that allow to make correct decisions about Content uniformity or uniformity of dosage units with high probability. The applicability of the proposed methodology is further illustrated using an HPLC-UV assay as well as a near infra-red spectrophotometric method.  相似文献   

12.
This study describes a specific, precise, sensitive and accurate method for simultaneous determination of hydroxyzine, loratadine, terfenadine, rupatadine and their main active metabolites cetirizine, desloratadine and fexofenadine, in serum and urine using meclizine as an internal standard. Solid‐phase extraction method for sample clean‐up and preconcentration of analytes was carried out using Phenomenex Strata‐X‐C and Strata X polymeric cartridges. Chromatographic analysis was performed on a Phenomenex cyano (150 × 4.6 mm i.d., 5 μm) analytical column. A D‐optimal mixture design methodology was used to evaluate the effect of changes in mobile phase compositions on dependent variables and optimization of the response of interest. The mixture design experiments were performed and results were analyzed. The region of ideal mobile phase composition consisting of acetonitrile–methanol–ammonium acetate buffer (40 mm ; pH 3.8 adjusted with acetic acid): 18:36:46% v /v/v was identified by a graphical optimization technique using an overlay plot. While using this optimized condition all analytes were baseline resolved in <10 min. Solvent mixtures were delivered at 1.5 mL/min flow rate and analytes peaks were detected at 222 nm. The proposed bioanalytical method was validated according to US Food and Drug Administration guidelines. The proposed method was sensitive with detection limits of 0.06–0.15 μg/mL in serum and urine samples. Relative standard deviation for inter‐ and intra‐day precision data was found to be <7%. The proposed method may find application in the determination of selected antihistaminic drugs in biological fluids.  相似文献   

13.
A simple, rapid, and stability-indicating HPLC method has been developed, fully validated, and applied to the quantification of paracetamol, pseudoephedrine hydrochloride, and chlorpheniramine maleate in a pharmaceutical formulation, using hydrochlorothiazide as an internal standard. Chromatographic separation was achieved isocratically on an RP porous graphitized carbon analytical column (125 x 2.1 mm id, particle size 5 microm) using 5.0 mM ammonium acetate-acetonitrile (35 + 65, v/v) mobile phase at a flow rate of 0.50 mL/min. UV spectrophotometric detection at 220 nm was used. The method had linear calibration curves over the range of 30-70 microg/mL for paracetamol, 1.8-4.2 microg/mL for pseudoephedrine hydrochloride, and 120-280 ng/mL for chlorpheniramine maleate. The intraday and interday RSD values were less than 3.2% for all compounds, while the relative error was less than 2.9%. Accelerated stability studies performed under various stress conditions proved the selectivity of the method. The developed method was applied successfully to QC and content uniformity tests of commercial tablets.  相似文献   

14.
In order to develop a method that is completely suitable for the routine therapeutic drug monitoring, a sensitive and fully automated on‐line column extraction apparatus in combination with high‐performance liquid chromatography allowing binary peak focusing was developed and validated for the determination of rifampicin in human plasma. Rifapentine was used as an internal standard. The analytical cycle started with the injection of 100 μL of the sample pretreated by protein precipitation in a Venusil SCX extraction column. After the elution, the analytes were transferred and concentrated in an Xtimate C18 trap column. Finally, the trapped analytes were separated by an Xtimate C18 analytical column and were analyzed by an ultraviolet detector at 336 nm. With this new strategy, continuous on‐line analysis of the compounds was successfully performed. The method showed excellent performance for the analysis of rifampicin in plasma samples, including calibration curve linearity (All r were larger than 0.9996), sensitivity (lowest limit of quantification was 0.12 μg/mL), method accuracy (within 6.6% in terms of relative error), and precision (relative standard deviations of intra‐ and interday precision were less than 7.8%). These results demonstrated that the simple, reliable, and automatic method based on on‐line column extraction and binary peak focusing is a promising approach for therapeutic drug monitoring in complex biomatrix samples.  相似文献   

15.
Tiopronin (TP) is a synthetic thiol compound without chromophore. By optimizing the chromatographic conditions and sample preparation processes, an improved LC‐MS/MS analytical method without derivatization has been developed and validated to determine TP concentrations in human plasma. After reduction with 1,4‐dithiothreitol, plasma samples were deproteinized with 10% perchloric acid. The post‐treatment samples were analyzed on a C8 column interfaced with a triple quadrupole tandem mass spectrometer in negative electrospray ionization mode. Methanol–5 mmol/L ammonium acetate (20:80, v/v) was used as the isocratic mobile phase. The assay was linear over the concentration range of 40.0–5000 ng/mL. The intra‐ and inter‐day precisions were within 12.9% in terms of relative standard deviation and the accuracy within 5.6% in terms of relative error. This simple and sensitive LC‐MS/MS method with short analytical time (3.5 min each sample) was successfully applied to the pharmacokinetic study of TP in healthy Chinese male volunteers after an oral dose of 300 mg TP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This study was to develop a liquid chromatographic method for the analysis of ramipril by the design of experiment. We first examined the effects of chromatographic parameters, such as column temperature, pH of mobile phase, flow rate of mobile phase and ion‐pairing reagents, on the isomerization of ramipril, and useda 23 factorial design to optimize the chromatographic conditions. This optimized method demonstrated good system suitability and linearity within 1.0–50 µg mL?1 (r2>0.999). The intra‐day and inter‐day precisions ranged from 0.4 to 2.7 %, and accuracy ranged from 98 to 100 %. The recoveries were greater than 99.2 %. The robustness test revealed the method remained unaffected by small deliberate variations of method parameters. This method was applied for the determination of ramipril in tablets. This study demonstrated that design of experiment was useful to efficiently assess the impacts of different parameters for analytical method development and optimization.  相似文献   

17.
A mass spectrometry method has been developed using the Quality by Design (QbD) principle. Direct analysis in real time mass spectrometry (DART-MS) was adopted to analyze a pharmaceutical preparation. A fishbone diagram for DART-MS and the Plackett-Burman design were utilized to evaluate the impact of a number of factors on the method performance. Multivariate regression and Pareto ranking analysis indicated that the temperature, determined distance, and sampler speed were statistically significant (P < 0.05). Furthermore, the Box-Behnken design combined with response surface analysis was then employed to study the relationships between these three factors and the quality of the DART-MS analysis. The analytical design space of DART-MS was thus constructed and its robustness was validated. In this presented approach, method performance was mathematically described as a composite desirability function of the critical quality attributes (CQAs). Two terms of method validation, including analytical repeatability and method robustness, were carried out at an operating work point. Finally, the validated method was successfully applied to the pharmaceutical quality assurance in different manufacturing batches. These results revealed that the QbD concept was practical in DART-MS method development. Meanwhile, the determined quality was controlled by the analytical design space. This presented strategy provided a tutorial to the development of a robust QbD-compliant mass spectrometry method for industrial quality control.
Figure
?  相似文献   

18.
A reliable selection of a representative subset of chemical compounds has been reported to be crucial for numerous tasks in computational chemistry and chemoinformatics. We investigated the usability of an approach on the basis of the k‐medoid algorithm for this task and in particular for experimental design and the split between training and validation set. We therefore compared the performance of models derived from such a selection to that of models derived using several other approaches, such as space‐filling design and D‐optimal design. We validated the performance on four datasets with different endpoints, representing toxicity, physicochemical properties and others. Compared with the models derived from the compounds selected by the other examined approaches, those derived with the k‐medoid selection show a high reliability for experimental design, as their performance was constantly among the best for all examined datasets. Of all the models derived with all examined approaches, those derived with the k‐medoid approach were the only ones that showed a significantly improved performance compared with a random selection, for all datasets, the whole examined range of selected compounds and for each dimensionality of the search space. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A systematic and novel quality by design–enabled, rapid, simple, and economic stability–indicating HPLC method for quantifying nirmatrelvir (NMT) was successfully developed and validated. An analytical target profile (ATP) was established, and critical analytical attributes (CAAs) were allocated to meet the ATP requirements. The method used chromatographic separation using a Purosphere column with a 4.6 mm inner diameter × 250 mm (2.5 μm). The analysis occurred at 50°C with a flow rate of 1.2 mL/min and detection at 220 nm. A 10 μL sample was injected, and the mobile phase consisted of two components: mobile phase A, containing 0.1% formic acid in water (20%), and mobile phase B, containing 0.1% formic acid in acetonitrile (80%). The diluent was prepared by mixing acetonitrile and water at a 90:10 v/v ratio. The retention time for the analyte was determined to be 2.78 min. Accuracy exceeded 99%, and the correlation coefficient was greater than 0.999. The validated HPLC method was characterized as precise, accurate, and robust. Significantly, NMT was found to be susceptible to alkaline, acidic, and peroxide conditions during forced degradation testing. The stability-indicating method developed effectively separated the degradation products formed during stress testing, underlining its effectiveness in stability testing and offering accuracy, reliability, and sensitivity in determining NMT.  相似文献   

20.
De novo design can be used to explore vast areas of chemical space in computational lead discovery. As a complement to virtual screening, from‐scratch construction of molecules is not limited to compounds in pre‐existing vendor catalogs. Here, we present an iterative fragment growth method, integrated into the program DOCK, in which new molecules are built using rules for allowable connections based on known molecules. The method leverages DOCK's advanced scoring and pruning approaches and users can define very specific criteria in terms of properties or features to customize growth toward a particular region of chemical space. The code was validated using three increasingly difficult classes of calculations: (1) Rebuilding known X‐ray ligands taken from 663 complexes using only their component parts (focused libraries), (2) construction of new ligands in 57 drug target sites using a library derived from ∼13M drug‐like compounds (generic libraries), and (3) application to a challenging protein‐protein interface on the viral drug target HIVgp41. The computational testing confirms that the de novo DOCK routines are robust and working as envisioned, and the compelling results highlight the potential utility for designing new molecules against a wide variety of important protein targets. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号