首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A tailor‐made Cu(II) ion‐imprinted polymer based on large‐surface‐area graphene oxide sheets has been synthesized for the preconcentration and determination of trace copper from food samples by solid‐phase extraction. Attributed to the ultrahigh surface area and hydrophilicity of graphene oxide, the Cu(II) ion‐imprinted polymer prepared by the surface ion‐imprinting technique exhibited a high binding capacity and a fast adsorption rate under the optimized experimental conditions. In the static adsorption experiments, the maximum adsorption capacity of Cu(II) ion‐imprinted polymer is 109.38 mg/g at 25°C, which is much higher than that of the nonimprinted polymer (32.12 mg/g). Meanwhile, the adsorption is very rapid and equilibrium is reached after approximately 30 min. The adsorption mechanism is found to follow Langmuir adsorption model and the pseudo‐second‐order adsorption process. The Cu(II) ion‐imprinted polymer was used for extracting and detecting Cu(II) in food samples combined with graphite flame atomic adsorption spectrometry with high recoveries in the range of 97.6–103.3%. The relative standard deviation and limit of detection of the method were evaluated as 1.2% and 0.37 μg/L, respectively. The results showed that the novel absorbent can be utilized as an effective material for the selective enrichment and determination of Cu(II) from food samples.  相似文献   

2.
In the present work, an electrothermal atomic absorption spectrometric method has been developed for the determination of ultra‐trace amounts of rhodium after adsorption of its 2‐(5‐bromo‐2‐pyridylazo)‐5‐diethylaminophenol/tetraphenylborate ion associated complex at the surface of alumina. Several factors affecting the extraction efficiency such as the pH, type of eluent, sample and eluent flow rates, sorption capacity of alumina and sample volume were investigated and optimized. The relative standard deviation for eight measurements of 0.1 ng/mL of rhodium was ±6.3%. In this method, the detection limit was 0.003 ng/mL in the original solution. The sorption capacity of alumina and the linear range for Rh(III) were evaluated as 0.8 mg/g and 0.015–0.45 ng/mL in the original solution, respectively. The proposed method was successfully applied for the extraction and determination of rhodium content in some food and standard samples with high recovery values.  相似文献   

3.
The influence of polymer matrix on the extraction efficiency for Cu(II) and selectivity against metal ions such as Ni(II), Cd(II), Pb(II) of Cu(II) imprinted copolymer gels was described. The functional monomers investigated include the weakly basic 4‐vinylpyridine (4‐VP) and its mixure with the acidic and hydrogen binding methacrylic acid. Copolymer gels were prepared by dispersion cross‐linking copolymerization using Cu(II)–4‐(2‐pyridylazo)resorcinol complex, Cu(II), or 4‐(2‐pyridylazo)resorcinol as templates. The chemical structure and morphology of the Cu(II)‐imprinted microbeads are defined using elemental analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. Extraction efficiencies of newly synthesized sorbents were studied by batch procedure. The prepared copolymer gel with 4‐VP as monomer and Cu(II)–4‐(2‐pyridylazo)resorcinol complex has higher capacity and selectivity toward Cu(II) than the copolymer gels prepared using the mixture of methacrylic acid and 4‐VP. This new sorbent can be used as an effective SPE material for the highly selective preconcentration and separation of Cu(II) in sea water samples. It shows high mechanical and chemical stability.  相似文献   

4.
The present work reports the development of a methodology for the direct determination of vanadium in high saline waters derived from offshore petroleum exploration employing electrothermal atomic absorption spectrometry. Such waters, usually called produced waters, present complex composition containing various organic and inorganic substances. In order to attain best conditions (highest sensitivity besides lowest background) for the methodology, studies about the effects of several variables (evaluation of pyrolysis and atomization temperatures, type of chemical modifier, concentration of modifier and pyrolysis time) and the convenient calibration strategy were performed. Best conditions were reached with the addition of 10 μg of NH4H2PO4 as chemical modifier employing pyrolysis (during 10 s) and atomization temperatures of 1500 and 2700 °C, respectively. Obtained results indicated that, in this kind of sample, vanadium can be determined by standard addition method or employing an external calibration approach with standard solutions prepared in 0.8 mol l−1 NaCl medium. In order to evaluate possible matrix interferences, a recovery test was performed with five spiked samples of produced waters. The limit of detection, limit of quantification and relative standard deviation in 0.8 mol l−1 NaCl medium were also calculated and the derived values were 1.9 μg l−1, 6.3 μg l−1 and 5.6% (at 10 μg l−1 level), respectively.  相似文献   

5.
A novel ion imprinted polyvinylimidazole-silica hybrid copolymer (IIHC) was synthesized and used as a selective solid sorbent for Pb2+ ions preconcentration using an on-line solid phase extraction (SPE) system coupled to TS-FF-AAS. The ionic hybrid sorbent was prepared using 1-vinylimidazole and 3-(trimethoxysilyl)propylmethacrylate as monomers, Pb2+ ions as template, tetraethoxysilane as reticulating agent and 2,2′-azobis-isobutyronitrile as initiator. The best on-line SPE conditions concerning sorption behavior, including sample pH (6.46), buffer concentration (9.0 mmol L−1), eluent (HNO3) concentration (0.5 mol L−1) and preconcentration flow rate (4.0 mL min−1), were optimized by means of full factorial design and Doehlert matrix. The analytical curve ranged from 2.5 to 65.0 μg L−1 (r = 0.999) with limit of detection of 0.75 μg L−1; the precision (repeatability) calculated as relative standard deviation (n = 10) was 5.0 and 3.6% for Pb2+ concentration of 10.0 and 60.0 μg L−1, respectively. From on-line breakthrough curve, column capacity was 3.5 mg g−1. Preconcentration factor (PF), consumptive index (CI) and concentration efficiency (CE) were 128.0, 0.16 mL and 25.6 min−1, respectively. The selective performance of the sorbent, based on relative selectivity coefficient, was compared to NIC (non imprinted copolymer) for the binary mixture Pb2+/Cd2+, Pb2+/Cu2+ and Pb2+/Zn2+. The results showed that ion imprinted polyvinylimidazole-silica hybrid polymer had higher selectivity for Pb2+ than NIC at 64.9, 16.0 and 8.8 folds. The developed method was successfully applied for highly sensitive and selective Pb2+ determination in different kinds of water samples, parenteral solutions and urine. Accuracy was also assessed by analyzing certified reference fish protein (DORM-3) and marine sediment (MESS-3 and PACS-2) with satisfactory results.  相似文献   

6.
A new approach for a cloud point extraction electrothermal atomic absorption spectrometric method was used for determining bismuth. The aqueous analyte was acidified with sulfuric acid (pH 3.0-3.5). Triton X-114 was added as a surfactant and dithizone was used as a complexing agent.After phase separation at 50 °C based on the cloud point separation of the mixture, the surfactant-rich phase was diluted using tetrahydrofuran (THF). Twenty microliters of the enriched solution and 10 μl of 0.1% (w/v) Pd(NO3)2 as chemical modifier were dispersed into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry. After optimizing extraction conditions and instrumental parameters, a preconcentration factor of 196 was obtained for a sample of only 10 ml. The detection limit was 0.02 ng ml−1 and the analytical curve was linear for the concentration range of 0.04-0.60 ng ml−1. Relative standard deviations were <5%.The method was successfully applied for the extraction and determination of bismuth in tap water and biological samples (urine and hair).  相似文献   

7.
A new approach for developing a cloud point extraction-electrothermal atomic absorption spectrometry has been described and used for determination of arsenic. The method is based on phase separation phenomenon of non-ionic surfactants in aqueous solutions. After reaction of As(V) with molybdate towards a yellow heteropoly acid complex in sulfuric acid medium and increasing the temperature to 55 °C, analytes are quantitatively extracted to the non-ionic surfactant-rich phase (Triton X-114) after centrifugation.To decrease the viscosity of the extract and to allow its pipetting by the autosampler, 100 μl methanol was added to the surfactant-rich phase. An amount of 20 μl of this solution plus 10 μl of 0.1% m/v Pd(NO3)2 were injected into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry.Total inorganic arsenic(III, V) was extracted similarly after oxidation of As(III) to As(V) with KMnO4. As(III) was calculated by difference. After optimization of the extraction condition and the instrumental parameters, a detection limit (3σB) of 0.01 μg l−1 with enrichment factor of 52.5 was achieved for only 10 ml of sample. The analytical curve was linear in the concentration range of 0.02-0.35 μg l−1. Relative standard deviations were lower than 5%. The method was successfully applied to the determination of As(III) and As(V) in tap water and total arsenic in biological samples (hair and nail).  相似文献   

8.
In the present work,an easy solid phase extraction method using alumina modified with polyethylenimine as a new adsorbent was applied to the simultaneous extraction of copper,silver,and palladium ions prior to their determination with electrothermal atomic absorption spectrometry.The analytical procedure involved the complex formation of these cations with polyethylenimine as a chelating agent in buffer media of pH 7.0.Under the optimum conditions,a preconcentration factor of200,150,and 200,precision of ±5.4%,±4.7%,and ±5.2%and linear calibration ranges of 15.0-140,4.0-93,and 7.5-125 ng/L(in original solution) for Cu,Ag,and Pd were obtained,respectively.Also detection limits of3.9,1.1,and 2.0 ng/L were obtained for Cu,Ag,and Pd,respectively.The proposed method was applied to the determination of copper,silver,and palladium in some real samples with satisfactory results.  相似文献   

9.
Lima EC  Brasil JL  Vaghetti JC 《Talanta》2003,60(1):103-113
Single noble metal permanent modifiers such as, Rh, Ir, and Ru, as well as mixed tungsten plus noble metal (W-Rh, W-Ru, W-Ir) permanent modifiers thermally deposited on the integrated platform of transversally heated graphite atomizer were employed for the determination of arsenic in sludges, soils, sediments, coals, ashes and waters by electrothermal atomic absorption spectrometry. Microwave digests of solid samples and water samples were employed for obtaining the analytical characteristics of the methods with different permanent modifiers. The performance of the modifiers for arsenic determination in the real samples depended strongly on the type of permanent modifier chosen. The single noble metal (Rh, Ir and Ru) permanent modifiers were suitable for the analyte determinations in simpler matrices such as waters (recoveries of certified values 95-105%), but the analyte recoveries of certified values in sludges, soils, sediments, coals, and ashes were always lower than 90%. On the other hand, for the determination of arsenic, using W-Rh, W-Ru, and W-Ir permanent modifiers presented recoveries of certified values within 95-105% for all the samples. Long-term stability curves obtained for the determination of arsenic in environmental samples with different permanent modifiers (Rh, Ir, Ru, W-Rh, W-Ir, W-Ru) showed that the improvement in the tube lifetime depends on the tungsten deposit onto the platform. The tungsten plus noble metal permanent modifier presents a tube lifetime of at least 35% longer when compared with single permanent modifier. The results for the determination of As employing different permanent modifiers in the samples were in agreement with the certified reference materials, since no statistical differences were found after applying the paired t-test at the 95% confidence level.  相似文献   

10.
浊点萃取电热原子吸收光谱法测定水中痕量铊   总被引:2,自引:0,他引:2  
采用吡咯烷基二硫代氨基甲酸铵(APDC)为螯合剂,Triton X-114作为表面活性剂,建立了浊点萃取预富集电热原子吸收光谱法测定水中痕量铊的方法。在优化的实验条件下,方法的检出限可达0.07μg/L,相对标准偏差为3.6%(4μg/L,n=7),加标回收率为93%~106%,富集倍率为31。该方法成功应用于自来水和河水中痕量铊的测定。  相似文献   

11.
A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 °C and 2600 °C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg–1 (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg–1 (wet weight).  相似文献   

12.
A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 μL, 200 μL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3Sb/m) of 7 ng L−1 and a relative standard deviation of 4.6% (at 500 ng L−1) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L−1 with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley.  相似文献   

13.
This work presents alternative procedures for the electrothermal atomic absorption spectrometric determination of boron in milk, infant formulas, and honey samples. Honey samples (10% m/v) were diluted in a medium containing 1% v/v HNO3 and 50% v/v H2O2 and introduced in the atomizer. A mixture of 20 µg Pd and 0.5 µg Mg was used for chemical modification. Calibration was carried out using aqueous solutions prepared in the same medium, in the presence of 10% m/v sucrose. The detection limit was 2 µg g− 1, equivalent to three times the standard error of the estimate (sy/x) of the regression line. For both infant formulas and milk samples, due to their very low boron content, we used a procedure based on preconcentration by solid phase extraction (Amberlite IRA 743), followed by elution with 2 mol L− 1 hydrochloric acid. Detection limits were 0.03 µg g− 1 for 4% m/v honey, 0.04 µg g− 1 for 5% m/v infant formula and 0.08 µg mL− 1 for 15% v/v cow milk. We confirmed the accuracy of the procedure by comparing the obtained results with those found via a comparable independent procedure, as well by the analysis of four certified reference materials.  相似文献   

14.
The behavior of various organic V forms dissolved in xylene during analysis by electrothermal atomic absorption spectrometry (ETAAS) was compared. The investigated analyte forms included compounds with vanadium at the oxidation state III, IV or V, as well as N, O or S atoms in molecules. Another group consisted of petroleum products containing naturally-occurring V species. Although the characteristic mass determined under different analytical conditions was in the very wide range from 11 up to 55 pg, some rules of V behavior were found. In the case of porphyrins and petroleum products, the application of Pd as a chemical modifier (xylene solution of Pd(II) acetylacetonate) seemed to be crucial. It was shown that Pd must be introduced to a furnace together with a sample. Pd injected and thermally pretreated before the sample injection was less effective for porphyrins and the petroleum products, but it increased signals of V compounds containing O as donor atom. The iodine pretreatment followed by the methyltrioctylammonium chloride (MTOACl) pretreatment was advantageous for these V forms. The air ashing in a graphite tube appeared to be important to improve decomposition of the petroleum products. No significant influence of the V oxidation state on the analytical signal was observed. The behavior of V contained in two Conostan oil standards, the single-element and the S21 multielement standard, was different in many situations. Probably, the joint action of other elements is responsible for this effect. In general, chemical modification was applied in the work for two reasons: to reduce the V volatility (in some cases losses at about 300 °C were observed) and to enhance the atomization efficiency. For routine analysis air ashing, modification by Pd introduced into the furnace together with the sample solution and petroleum products with known V content as standard is recommended. Using this procedure the characteristic mass varied from 16 to 19 pg for porphyrins and all the investigated petroleum products of different character and origin. The detection limit of 1.8 μg kg− 1 obtained for xylene solutions of petroleum products is very beneficial. Additionally, the stability of V in petroleum products xylene solutions allows the use of an autosampler. A more general finding of this work is that the effect of the organic part of an analyte compound molecule in ETAAS analysis can be enormous which should be taken into account in routine analyses of various samples.  相似文献   

15.
In this work, a new chelating resin [1,5-bis (2-pyridyl)-3-sulphophenyl methylene] thiocarbonohydrazide immobilised on aminopropyl-controlled pore glass (550 A; PSTH-cpg) was synthesised and packed in a microcolumn which replaced the sample tip of the autosampler arm. The system was applied to the preconcentration of lead. When microliters of 10% HNO3, which acts as elution agent, pass through the microcolumn, the preconcentrated Pb(II) is eluted and directly deposited in a tungsten-rhodium coated graphite tube. With the use of the separation and preconcentration step and the permanent modifiers, the analytical characteristics of the technique were improved. The proposed method has a linear calibration range from 0.012 to 10 ng ml(-1) of lead. At a sample frequency of 36 h(-1) with a 90 s preconcentration time, the enrichment factor was 20.5, the detection and determination limits were 0.012 and 0.14 ng ml(-1), respectively and the precision, expressed as relative standard deviation, was 3.2% (at 1 ng ml(-1)). Results from the determination of Pb in biological certified reference materials were in agreement with the certified values. Seawaters and other biological samples were analysed too.  相似文献   

16.
A simple and sensitive cloud point extraction method has been developed for the preconcentration of ultra-trace amounts of gold as a prior step to its determination by electrothermal atomic absorption spectrometry. It is based on the extraction of gold in hydrochloric acid medium using the non-ionic surfactant polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) without adding a chelating agent. The preconcentration of a 50 mL sample solution was thus enhanced by a factor of 200. The resulting calibration graph was linear in the range of 10–200 ng L−1 with a correlation coefficient of 0.9993. The limit of detection (3s) obtained under optimal conditions was 2.0 ng L−1. The relative standard deviation for 10 replicate determinations at a 100 ng L−1 Au level was 3.6%. The method was applied to the ultra-trace determination of gold in water and copper samples.  相似文献   

17.
New ion-imprinted polymeric (IIP) materials were synthesized by copolymerization of 4-vinylpyridine (VP) and styrene as functional monomers and divinylbenzene as a cross-linking agent with chelating complexes of Pd(II) in the presence of 2,2-azobisisobutyronitrile as an initiator. The complexes of Pd(II) with ammonium pyrrolidinedithiocarbamate (APDC), N,N′-diethylthiourea (DET), and dimethylglyoxime (DMG) were used for this purpose. Chloroform, ethanol, and cyclohexanol were applied as porogens. The ion-imprinted polymers were tested in a flow mode as sorbents for solid-phase extraction of palladium from aqueous solutions. The conditions of Pd(II) separation on all polymers were optimized. The efficiencies of retention of Pd on different polymers in the presence of high excess of interfering ions were compared. The effect of the used porogen on the analytical performance of the prepared polymers was also investigated. The calculated sorbent capacities for Pd(II) were in the range from 9.25 mg g−1 to 13.3 mg g−1. The sorbent with Pd(II) imprinted as Pd-DMG-VP complex in chloroform was used for preconcentration of trace amounts of Pd. The detection limit for 100 mL of the sample was 5 μg L−1 using flame atomic absorption spectrometry (FAAS). The developed method was applied for the determination of Pd in water samples.  相似文献   

18.
Ruthenium (Ru), thermally deposited on a integrated platform graphite furnace, was investigated as a permanent modifier for the determination of Aluminum (Al) in blood serum and urine by electrothermal atomic absorption spectrometry (ETAAS). The platform was treated with 500 μg of Ru as previously described. The pyrolysis and atomization temperatures for each material were of 1300 and 2300 °C, for serum sample and of 1000 and 2400 °C, for urine. The characteristic mass were of 31 and 33 pg for Al in serum sample and urine, respectively (recommended of 31 pg for Al in nitric acid 0.2% (v/v)). For this reason, the calibration was made with aqueous solutions for both the samples. Calibration curves presented r of 0.99145 and 0.99991 for serum and urine, respectively. With the optimized temperatures, being analyzed eight spiked blood serum samples, the recovery was between 95.90 and 113.50%. Two certified urines samples were analyzed with good agreement between experimental and reference values. In both the samples the R.S.D. were <5% (n=3). The detection limit (k=3, n=10) was of 0.40 μg of Al per liter for both the samples. The absorption pulses obtained were symmetrical, with very low background and without interferences. The life time of the tube-platform was higher than 600 cycles of atomizations for both the urine and serum samples.  相似文献   

19.
1-(2-pryidylazo)-2-naphthol (PAN) immobilized on sodium dodecyl sulfate-coated nano alumina was developed for the preconcentration and determination of metal cations Co (II) from environmental and food samples. The research results displayed that adsorbent has the highest adsorption capacity for Co (II) in this system. Desorption by elution of the adsorbent with 2.0?ml of a mixture of nitric acid and ethanol was carried out. After phase separation, the enriched analyte in the final solution is determined by flame atomic absorption spectrometry (FAAS) by using a micro sample introduction system. Analytical influencing parameters including pH value, amount of sorbent, equilibrium time, sample volume, volume and concentration of eluent were examined. The effect of common matrix ions has also been investigated and it was found that they had no influence on cobalt preconcentration. Under the optimum experimental conditions, the maximum capacity of sorbent was obtained as 20?mg?g?1. The preconcentration factor and limit of detection were found to be 250 and 0.15?µg?L?1, respectively. This method showed good precision with the relative standard deviation (RSD) of 2.4% and 2.1% in concentrations of 20 and 50?µg?L?1, respectively. The accuracy of the method was evaluated by comparison of results with those obtained by electrothermal atomic absorption spectrometry. This method was successfully applied for preconcentration and determination of Co (II) in environmental and food samples.  相似文献   

20.
Tang AN  Ding GS  Yan XP 《Talanta》2005,67(5):942-946
Cloud point extraction was applied as a preconcentration step for electrothermal atomic absorption spectrometry (ETAAS) determination of As(III) in aqueous solutions. After complexation with ammonium pyrrolidinedithiocarbamate, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. 0.1 mol L−1 HNO3 in methanol was added to the surfactant-rich phase before ETAAS determination. The precision (R.S.D.) for 11 replicate determinations of 5.0 μg L−1 of As(III) was 3.0%. The concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for ETAAS determination and in the initial solution, was 36 for As(III). The linear concentration range was from 0.1 to 20 μg L−1. The developed method was applied to the determination of As(III) in lake water and river water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号