首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MIL‐101(Cr) is an excellent metal–organic framework with high surface area and nanoscale cavities, making it promising in solid‐phase extraction. Herein, we used MIL‐101(Cr) as a solid‐phase extraction packing material combined with fast detection of direct analysis in real time mass spectrometry (DART‐MS) for the analysis of triazine herbicides. After systematic optimization of the operation parameters, including the gas temperature of DART, the moving speed of the 1D platform, solvent for desorption, amount of MIL‐101(Cr) extraction time, eluent volume and salt concentration, this method can realize the simultaneous detection of five kinds of triazine herbicides. The limits of detection were 0.1~0.2 ng/mL and the linear ranges covered more than two orders of magnitude with the quantitation limits of 0.5~1 ng/mL. Moreover, the developed method has been applied for the analysis of lake water samples and the recoveries for spiked analytes were in the range of 85~110%. These results showed that solid‐phase extraction with metal–organic frameworks is an efficient sample preparation approach for DART‐MS analysis and could find more applications in environmental analysis.  相似文献   

2.
In this study, a magnetic metal–organic framework was synthesized simply and utilized in the dispersive magnetic solid‐phase extraction of five phthalate esters followed by their determination by gas chromatography with mass spectrometry. First, MIL‐101(Cr) was prepared hydrothermally in water medium without using highly corrosive hydrofluoric acid, utilizing an autoclave oven heat supply. Afterward, Fe3O4 nanoparticles were decorated into the matrix of MIL‐101(Cr) to fabricate magnetic MIL‐101 nanocomposite. The nanocomposite was characterized by various techniques. The parameters affecting dispersive magnetic solid‐phase extraction efficiency were optimized and obtained as: a sorbent amount of 15 mg; a sorption time of 20 min; an elution time of 5 min; NaCl concentration, 10% w/v; type and volume of the eluent 1 mL n‐hexane/acetone (1:1 v/v). Under the optimum conditions detection limits and linear dynamic ranges were achieved in the range of 0.08–0.15 and 0.5–200 μg/L, respectively. The intra‐ and interday RSD% values were obtained in the range of 2.5–9.5 and 4.6–10.4, respectively. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of the model analytes in water samples, and human plasma in the range of microgram per liter and satisfactory results were obtained.  相似文献   

3.
A three‐dimensional graphene was synthesized through a hydrothermal reaction of graphene oxide with phytic acid. The microstructure and morphology of the phytic acid induced three‐dimensional graphene were investigated by nitrogen adsorption–desorption isotherms, scanning electron microscopy, and transmission electron microscopy. With a large surface area and three‐dimensional structure, the graphene was used as the solid‐phase extraction adsorbent for the extraction of phthalate esters from bottled water and sports beverage samples before high‐performance liquid chromatographic analysis. The results indicated that the graphene was efficient for the solid‐phase extraction of phthalate esters. The limits of detection (S/N = 3) of the method for the analytes were 0.02–0.03 ng/mL for the water samples and 0.03–0.15 ng/mL for the sports beverage sample. The limits of quantitation (S/N = 9) for the analytes were 0.06–0.09 ng/mL for water samples and 0.09–0.45 ng/mL for sports beverage sample. The calibration curves for the phthalate esters by the method had a good linearity from 0.1 to 80.0 ng/mL with correlation coefficients larger than 0.9997. The recoveries of the analytes for the method fell in the range of 86.7–116.2% with the relative standard deviations between 1.5 and 6.8%.  相似文献   

4.
Biocompatible magnetic nanoparticles that featured divinylbenzene and sulfonate functionalities were used for the magnetic solid‐phase extraction of five angiotensin II receptor antagonists from human urine and plasma samples based on a reversed‐phase and cation‐exchange mixed‐mode mechanism. Under the optimized extraction conditions, coupled to high‐performance liquid chromatography with fluorescence detection, this proposed method was found to be accurate and precise with relative standard deviations of less than 11.7%, and a good recovery of 80.1–119.5% for both samples. The linear ranges were 0.2–2000 and 0.2–2500 ng/mL along with correlation coefficients above 0.9923 and 0.9928 for urine and plasma samples, respectively. Limits of detection were 0.01–5.74 and 0.01–1.31 ng/mL, respectively. The proposed magnetic solid‐phase extraction based on the magnetic nanoparticles functionalized with divinylbenzene and sulfonate was a reliable and convenient sample pretreatment method and had the potential for isolating and enriching the angiotensin II receptor antagonists in biological samples.  相似文献   

5.
An easy‐to‐handle magnetic dispersive solid‐phase extraction procedure was developed for preconcentration and extraction of cocaine and cocaine metabolites in human urine. Divinyl benzene and vinyl pyrrolidone functionalized silanized Fe3O4 nanoparticles were synthesized and used as adsorbents in this procedure. Scanning electron microscopy, vibrating sample magnetometry, and infrared spectroscopy were employed to characterize the modified adsorbents. A high‐performance liquid chromatography with mass spectrometry method for determination of cocaine and its metabolites in human urine sample has been developed with pretreatment of the samples by magnetic dispersive solid‐phase extraction. The obtained results demonstrated the higher extraction capacity of the prepared nanoparticles with recoveries between 75.1 to 105.7% and correlation coefficients higher than 0.9971. The limits of detection for the cocaine and cocaine metabolites were 0.09–1.10 ng/mL. The proposed magnetic dispersive solid‐phase extraction method provided a rapid, environmentally friendly and magnetic stuff recyclable approach and it was confirmed that the prepared adsorbents material was a kind of highly effective extraction materials for the trace cocaine and cocaine metabolites analyses in human urine.  相似文献   

6.
Metal–organic frameworks‐5 (MOF‐5) was explored as a template to prepare porous carbon due to its high surface area, large pore volume, and permanent nanoscale porosity. Magnetic porous carbon, Co@MOF‐5‐C, was fabricated by the one‐step direct carbonization of Co‐doped MOF‐5. After carbonization, the magnetic cobalt nanoparticles are well dispersed in the porous carbon matrix, and Co@MOF‐5‐C displays strong magnetism (with the saturation magnetization intensity of 70.17emu/g), high‐specific surface area, and large pore volume. To evaluate its extraction performance, the Co@MOF‐5‐C was applied as an adsorbent for the magnetic solid‐phase extraction of endocrine disrupting chemicals, followed by their analysis with high‐performance liquid chromatography. The developed method exhibits a good linear response in the range of 0.5–100 ng/mL for pond water and 1.0–100 ng/mL for juice samples. The limits of detection (S/N  = 3) for the analytes were in the range of 0.1–0.2 ng/mL.  相似文献   

7.
Surfactant cetyltrimethylammonium bromide enhanced molybdenum disulfide was used as an adsorbent in pipette‐tip solid‐phase extraction for the pretreatment of sulfonamides in environmental water samples. The factors affecting the extraction recoveries of the analytes, including the sample pH value, amount of sorbent, type and volume of eluent solution, and salt concentration were optimized. This pipette‐tip solid‐phase extraction method demonstrated good linearity (0.05–10.0 µg/L) with a coefficient of determination of 0.9984–0.9996, limit of detection (0.2–0.4 ng/L) and limit of quantitation (0.5–1.0 ng/L), good analyte recoveries (76–91), and acceptable limit of quantitation (<10%) under the optimized conditions. These results indicated that the proposed method was a good tool for monitoring sulfonamides in environmental water samples.  相似文献   

8.
In this study, corn stalk was used to synthesize a magnetic adsorbent by pyrolysis together with KHCO3 as the chemical activator and iron(III) salt as the magnetic reagent. The characterization by scanning electron microscopy, transmission electron microscopy and N2 adsorption–desorption analysis showed that the magnetic carbon adsorbent had a structure of hierarchical pores with a high specific surface area. To evaluate its adsorption performance, the adsorbent was used for the extraction of carbamates pesticides (propoxur, isoprocarb and fenobucarb) from water and zucchini samples before high‐performance liquid chromatography analysis. The result showed that the adsorbent had a good adsorption capability for the analytes. Under the optimized conditions, a good linearity for the analytes existed in the range of 0.1–100.0 ng/mL for water samples and 0.5–100.0 ng/g for zucchini samples with the correlation coefficients of 0.9992–0.9998. The limits of detection for the analytes at a signal to noise ratio of 3 were 0.03 ng/mL for water samples and 0.20–0.50 ng/g for zucchini samples.  相似文献   

9.
A simple hydrophilic polyamide organic membrane protected micro‐solid‐phase extraction method with graphene oxide as the sorbent was developed for the enrichment of some parabens from water and vinegar samples prior to gas chromatography with mass spectrometry detection. The main experimental parameters affecting the extraction efficiencies, such as the type and amount of the sorbent, extraction time, stirring rate, salt addition, sample solution pH and desorption conditions, were investigated. Under the optimized experimental conditions, the method showed a good linearity in the range of 0.1–100.0 ng/mL for water samples and 0.5–100.0 ng/mL for vinegar samples, with the correlation coefficients varying from 0.9978 to 0.9997. The limits of detection (S/N = 3) of the method were in the range of 0.005–0.010 ng/mL for water samples and 0.01–0.05 ng/mL for vinegar samples, respectively. The recoveries of the method for the analytes at spiking levels of 5.0 and 70.0 ng/mL were between 84.6 and 106.4% with the relative standard deviations varying from 4.2 to 9.5%. The results indicated that the developed method could be a practical approach for the determination of paraben residues in water and vinegar samples.  相似文献   

10.
A simple, rapid, and sensitive method for the determination of naproxen and ibuprofen in complex biological and water matrices (cow milk, human urine, river, and well water samples) has been developed using ultrasound‐assisted magnetic dispersive solid‐phase microextraction. Magnetic ethylendiamine‐functionalized graphene oxide nanocomposite was synthesized and used as a novel adsorbent for the microextraction process and showed great adsorptive ability toward these analytes. Different parameters affecting the microextraction were optimized with the aid of the experimental design approach. A Plackett–Burman screening design was used to study the main variables affecting the microextraction process, and the Box–Behnken optimization design was used to optimize the previously selected variables for extraction of naproxen and ibuprofen. The optimized technique provides good repeatability (relative standard deviations of the intraday precision 3.1 and 3.3, interday precision of 5.6 and 6.1%), linearity (0.1–500 and 0.3–650 ng/mL), low limits of detection (0.03 and 0.1 ng/mL), and a high enrichment factor (168 and 146) for naproxen and ibuprofen, respectively. The proposed method can be successfully applied in routine analysis for determination of naproxen and ibuprofen in cow milk, human urine, and real water samples.  相似文献   

11.
A novel magnetic porous carbon derived from a bimetallic metal–organic framework, Zn/Co‐MPC, was prepared by introducing cobalt into ZIF‐8. Magnetic porous carbon that possesses magnetic properties and a large specific surface area was firstly fabricated by the direct carbonization of Zn/Co‐ZIF‐8. The prepared magnetic porous carbon material was characterized by scanning electron microscopy, transmission electron microscopy, powder X‐ray diffraction, N2 adsorption, and vibrating sample magnetometry. The prepared magnetic porous carbon was used as a magnetic solid‐phase extraction adsorbent for the enrichment of chlorophenols from water and honey tea samples before high‐performance liquid chromatography analysis. Several experimental parameters that could influence the extraction efficiency were investigated and optimized. Under the optimum conditions, good linearities (r > 0.9957) for all calibration curves were obtained with low limits of detection, which are in the range of 0.1–0.2 ng mL?1 for all the analytes. The results showed that the prepared magnetic porous carbon had an excellent adsorption capability toward the target analytes.  相似文献   

12.
The simultaneous determination of amphetamine and methadone was carried out by magnetic graphene oxide nanoparticles, a magnetic solid‐phase extraction adsorbent, as a new sample treatment technique. The main factors (the amounts of sample volume, amount of adsorbent, type and amount of extraction organic solvent, time of extraction and desorption, pH, the ionic strength of extraction medium, and agitation rate) influencing the extraction efficiency were investigated and optimized. Under the optimized conditions, good linearity was observed in the range of 100–1500 ng/mL for amphetamine and 100–1000 ng/mL for methadone. The method was evaluated for determination of AM and methadone in positive urine samples, satisfactory results were obtained, therefore magnetic solid‐phase extraction can be applied as a novel method for the determination of drugs of abuse in forensic laboratories.  相似文献   

13.
A simple method is introduced providing a highly clean microextraction for the determination of some anti‐inflammatory drugs as the model analytes in human urine and environmental matrices. This method is based upon the implementation of two consecutive emulsification liquid‐phase microextractions, which are separated by a syringe filtration step. In this method, the organic extraction solvent (dihexyl ether) is dispersed into the aqueous sample solution (20 mL), and the resulting cloudy mixture is passed through a hydrophilic polytetrafluoroethylene syringe filter. By this action, the extraction phase containing the analytes and many interfering species that could be transferred into the organic phase is retained behind the hydrophilic membrane. The filter is then detached from the syringe and attached to another syringe containing an aqueous solution (pH 12.0, 150 μL), and by the in‐syringe dispersion of the organic phase into the aqueous phase, the analytes are selectively back‐extracted into the aqueous phase. The developed method is centrifuge‐free and very simple, and provides a high sample clean‐up in a few minutes. Under the optimized experimental conditions, the developed method provided a linearity in the range of 2.0–2000 ng/mL, a low limit of detection (0.5 ng/mL), and enrichment factors of 47–53.  相似文献   

14.
A novel molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed for the selective extraction of telmisartan from human urine. Molecularly imprinted polymers were prepared by a noncovalent imprinting approach through UV‐radical polymerization using telmisartan as a template molecule, 2‐dimethylamino ethyl methacrylate as a functional monomer, ethylene glycol dimethacrylate as a cross‐linker, N,N‐azobisisobutyronitrile as an initiator, chloroform as a porogen. Molecularly imprinted polymers and nonimprinted control polymer sorbents were dry‐packed into solid‐phase extraction cartridges, and eluates from cartridges were analyzed using a spectrofluorimeter. Limit of detection and limit of quantitation values were 11.0 and 36.0 ng/mL, respectively. A very high imprinting factor (16.1) was achieved and recovery values for the telmisartan spiked in human urine were in the range of 76.1–79.1%. In addition, relatively low within‐day (0.14–1.6%) and between‐day (0.11–1.31%) precision values were obtained. Valsartan was used to evaluate the selectivity of sorbent as well. As a result, a sensitive, selective, and simple molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed and successfully applied to the direct determination telmisartan in human urine.  相似文献   

15.
In this work, a magnetic β‐cyclodextrin polymer was successfully prepared and used as an adsorbent for the magnetic solid‐phase extraction of six benzoylurea insecticides (diflubenzuron, triflumuron, hexaflumuron, teflubenzuron, flufenoxuron, and chlorfluazuron) from honey, tomato, and environmental water samples. The influence of the main experimental conditions on the extraction was studied. Under the optimized conditions, the β‐cyclodextrin polymer@Fe3O4 showed an excellent extraction performance for the benzoylurea insecticides. A good linearity was obtained for the analytes in the range of 3.0–800 ng/g for honey samples, 0.3–160 ng/g for tomato samples, and 0.1–80.0 ng/mL for water samples, with the correlation coefficients above 0.9998. Satisfactory repeatabilities were achieved, with the relative standard deviations less than 5.7%. The limits of detection (S/N = 3) of the method for the benzoylurea insecticides were 0.2–0.8 ng/g for honey samples, 0.04–0.10 ng/g for tomato samples, and 0.02–0.05 ng /mL for water samples. The method was successfully used for the determination of the six benzoylurea insecticides residues in honey, tomato, and environmental water samples with a satisfactory result.  相似文献   

16.
In this work, a magnetic metal–organic framework designated as MIL‐100(Fe) was prepared and applied as a magnetic solid‐phase extraction sorbent for the determination of trace polycyclic aromatic hydrocarbons in environmental water samples by coupling with high‐performance liquid chromatography and fluorescence detection. The magnetic microspheres exhibited large surface areas and high extraction ability, making them excellent candidates as sorbents for enrichment of trace polycyclic aromatic hydrocarbons. Under the optimized experimental conditions, good sensitivity levels were achieved with low detection limits ranging from 32 to 2110 pg/mL and good linearities with correlation coefficients higher than 0.9990 for the investigated 13 polycyclic aromatic hydrocarbons. The proposed method has been validated in the analysis of real water samples with mean recoveries in the range of 81.4–126.9% at four spiked levels and the relative standard deviations in the range of 1.3–17.0%. The magnetic MIL‐100(Fe) microspheres were stable enough for 150 extractions without a significant loss of extraction performance.  相似文献   

17.
Diallyldimethylammonium chloride modified magnetic nanoparticles were synthesized by the “thiol‐ene” click chemistry reaction. Diallyldimethylammonium chloride rendered the material plenty of quaternary ammonium groups, and thus the excellent aqueous dispersibility and anion‐exchange capability. The novel material was then used as the magnetic solid‐phase extraction sorbent to extract eight non‐steroidal anti‐inflammatory drugs from water samples. Combined with high‐performance liquid chromatography and ultraviolet detection, under the optimal conditions, the developed method exhibited wide linearity ranges (1–1000, 2–1000, and 5–1000 ng/mL) with recoveries of 88.0–108.6% and low limits of detection (0.3–1.5 ng/mL). Acceptable precision was obtained with satisfactory intra‐ and inter‐day relative standard deviations of 0.4–4.4% (= 3) and 1.1–5.5% (= 3), respectively. Batch‐to‐batch reproducibility was acceptable with relative standard deviations <9.7%. The hydrophilic magnetic nanoparticle featured with quaternary ammonium groups showed high analytical potential for acidic analytes in environmental water samples.  相似文献   

18.
Magnetic spherical carbon was synthesized by a facile hydrothermal carbonization procedure with biomass glucose as the carbon precursor and nanoclusters iron colloid as magnetic precursor. The textures of the as‐prepared magnetic spherical carbon were characterized by nitrogen adsorption–desorption isotherms, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy and vibration sample magnetometry. Results indicated that the magnetic spherical carbon possessed high surface area as well as strong magnetism, which endows the material with good adsorption capability and easy separation properties. To assess its absorption performance, the magnetic spherical carbon was employed as adsorbent for the extraction and preconcentration of phthalate esters from lake water and milk samples before high‐performance liquid chromatographic analysis. Some key parameters that could influence the enrichment efficiency were investigated. Under the optimum conditions, a good linearity was achieved with the linear correlation coefficients higher than 0.9973. The limits of detection (S/N = 3) were 0.05–0.08 ng/mL for lake water and 0.1–0.2 ng/mL for milk samples. The recoveries of the analytes for the method were in the range 80.1–112.6%.  相似文献   

19.
The coextraction of acidic and basic compounds from different mediums is a significant concept in sample preparation. In this work, simultaneous extraction of acidic, basic, and neutral analytes in a single step was carried out for the first time. This procedure employed the dispersive solid‐phase microextraction of analytes with magnetic graphene oxide (graphene oxide/Fe3O4) sorbent followed by gas chromatography with flame ionization detection. After the adsorption of analytes by vortexing and decantation of the supernatant with a magnet, the sorbent was eluted with acetonitrile/methanol (2:1) mixture. The parameters affecting the extraction efficiency were optimized and obtained as follows: sorbent amount 60 mg, desorption time 1 min, extraction time 5 min, pH of the sample 7, sample volume 20 mL, and elution solvent volume 0.3 mL. Under the optimum conditions, linear dynamic ranges were achieved in the range of 0.5–4, 0.25–4, and 0.25–2 μg/mL and limits of detection were 0.341, 0.110, and 0.167 μg/mL for aniline, phenol, and naphthalene, respectively. The relative standard deviations were in the range of 3.3–5.7% in eight repeated extractions. Finally, the applicability of the method was evaluated by the extraction and determination of analytes in stream water and drinking water samples and satisfactory results were obtained.  相似文献   

20.
A facile and efficient strategy is developed to modify aptamers on the surface of the magnetic metal‐organic framework MIL‐101 for the rapid magnetic solid‐phase extraction of ochratoxin A. To the best of our knowledge, this is the first attempt to create a robust aptamer‐modified magnetic MIL‐101 with covalent bonding for the magnetic separation and enrichment of ochratoxin A. The saturated adsorption of ochratoxin A by aptamer‐modified magnetic MIL‐101 was 7.9 times greater than that by magnetic metal‐organic framework MIL‐101 due to the former's high selective recognition as well as good stability. It could be used for extraction more than 12 times with no significant changes in the extraction efficiency. An aptamer‐modified magnetic MIL‐101‐based method of magnetic solid‐phase extraction combined with ultra high performance liquid chromatography with tandem mass spectrometry was developed for the determination of trace ochratoxin A with limit of detection of 0.067 ng/L. Ochratoxin A of 4.53–13.7 ng/kg was determined in corn and peanut samples. The recoveries were in the range 82.8–108% with a relative standard deviation (n = 5) of 4.5–6.5%. These results show that aptamer‐modified magnetic MIL‐101 exhibits selective and effective enrichment performance and have excellent potential for the analysis of ultra‐trace targets from complex matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号