首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel analytical approach has been developed for the determination of selected drugs (milrinone, enalapril, carvedilol, spironolactone, acenocumarol, ticlopidine, cilazapril) and their metabolites (2‐oxoticlopidine, cilazaprilat, canrenone, 5′‐hydroxycarvedilol, O‐desmethyl‐carvedilol, enalaprilat) in human urine, based on a miniaturized extraction technique; semiautomatic microextraction by packed sorbent, using a new digitally controlled syringe, followed by ultra high pressure liquid chromatography separation combined with UV detection. During method optimization, the extraction parameters as the type of sorbent material, type and volume of elution solution, number of extraction cycles, volume and pH of sample, type and volume of washing solution were studied. The chromatographic separation of the target analytes was performed with a core–shell analytical column using 0.05% trifluoroacetic acid in water and acetonitrile in gradient elution mode. The limits of quantification ranged from 0.016 to 0.045 μg/mL. Under the optimized conditions, extraction efficiency was higher than 70.1% for drugs and their metabolites. Due to its simplicity and speed, this method was successfully applied to the quantitation of selected compounds in urine samples.  相似文献   

2.
Quinapril is an antihypertensive drug commonly used in the treatment of hypertension and congestive heart failure. In this work, a capillary zone electrophoresis system is optimized for the analysis of quinapril and its active metabolite quinaprilat in urine, as well as for the determination of the drug and its combination with hydrochlorothiazide in pharmaceuticals. The separation takes place in a fused-silica capillary. The running electrolyte consists of a 60 mM borate buffer solution, pH 9.5. The analysis of urine samples requires a previous extraction step using C8 solid-phase cartridges. Under the optimum experimental conditions, the separation of the two analytes and the internal standard takes less than 5 min. The detection limits obtained (75 and 95 ng/mL for quinapril and quinaprilat, respectively) allow the application of the electrophoretic method to the determination of the drug and its metabolite in urine samples obtained from four patients treated with quinapril.  相似文献   

3.
A simple and rapid capillary electrophoresis (CE) with electrcochemical detection (ED) method has been established for the simultaneous determination of seven active ingredients in the stems and roots of Gaultheria leucocarpa var. yunnanensis and its medicinal preparation, including (+)-catechin, rutin, gentisic acid, vallinic acid, salicylic acid, quercetin, and protocatechuic acid. The effects of working potential, pH, and concentration of running buffer, separation voltage, and injection time on CE-ED are systematically investigated. Under the optimum conditions, the seven analytes could be completely separated within 23 min in a borax running buffer (pH 8.7). A good linear relationship is obtained over three orders of magnitude with detection limits (signal-to-noise ratio=3) ranging from 5x10(-8) g/mL to 3x10(-7) g/mL for the analytes. The proposed method is successfully used in the analysis of real samples after a relatively simple extraction procedure, and the assay results are satisfactory.  相似文献   

4.
A novel capillary electrochromatography method was developed for the determination of dopamine (DA), epinephrine (EP), and norepinephrine (NE) by using a graphene oxide (GO) molecularly imprinted polymers (MIPs) coated capillary. In this article, GO was introduced as supporting matrix to synthesize MIPs in the presence of DA as template molecule. Then GO MIPs were used as the stationary phase in electrochromatography for the determination of DA, EP, and NE. The separation of these three analytes was achieved under the optimal conditions with a satisfactory correlation coefficients (R2) > 0.9957 in the range of 5.0–200.0 μg/mL for EP and NE, and 20.0–200.0 μg/mL for DA, respectively. The RSDs for the determination of three analytes were <6.19%, and the detection limits were 1.25 μg/mL for EP and NE, and 10.0 μg/mL for DA, respectively. Finally, this method was used for the determination of DA, EP, and NE in human serum and DA hydrochloride injection.  相似文献   

5.
A simple method using solid-phase extraction (SPE) and ultra high-performance liquid chromatography (UHPLC) for the simultaneous determination of β-blockers, isoflavones, and flavonoids in human urine is developed. A statistical central composite design and response surface analysis is used to optimize the separation of the analytes. These multivariate procedures are efficient in determining the optimal separation condition using resolutions and retention time as responses. A gradient elution using a mobile phase consisting of 0.05% trifluoroacetic acid in water and acetonitrile is applied on a Hypersil GOLD column within a short analysis time of 4.5 min. UV detection was used to monitor the analytes. The suggested method was linear in a concentration range from 0.04-20.00 μg/mL, depending on the compound. The limits of detection ranged from 8.9 to 66.2 ng/mL. The precision was lower than 2.74%, and the accuracy was between 0.01-3.65%. The Oasis HLB column, with the highest recoveries, is selected for the pre-concentration step. This present paper reports, for the first time, a method for the simultaneous determination of β-blockers, isoflavones, and flavonoids in human urine samples. Furthermore, the developed method can also be applied to the routine determination of examined compounds concentrations in human urine.  相似文献   

6.
高吭  刘雅珣  柯威  刘凯  倪浏阳  陶涛 《色谱》2020,38(11):1348-1354
公安机关用胶体金尿检法对海洛因滥用者的检测常常受到阿片类镇咳药的干扰,使用传统液-液提取法进行实验室检验,操作效率低,灵敏度不高,无法满足公安机关打击涉毒案件的需要。为此,该研究建立了尿液中吗啡、O 6 -单乙酰吗啡、可待因和乙酰可待因4种阿片类物质的固相萃取和衍生化技术结合气相色谱-质谱联用(GC-MS)同时检测方法。尿样用磷酸盐缓冲液调节至pH=6后,经MCX固相萃取柱净化,用N -甲基-N -(三甲基硅烷基)三氟乙酰胺(MSTFA)对吗啡、O 6 -单乙酰吗啡、可待因进行衍生化,供GC-MS检测。考察了上样和洗脱流速、淋洗液中甲酸体积分数、洗脱液中氨水体积分数、3%(v/v)甲酸甲醇淋洗液体积和固相萃取柱吹干时间对萃取效果的影响。确定上样和洗脱流速1.0 mL/min,淋洗液中甲酸体积分数3%,洗脱液中氨水体积分数5%,3%(v/v)甲酸甲醇淋洗液体积1 mL,吹干时间1 min为最佳条件。在此条件下,4种阿片类物质在0.02~0.8 μg/mL范围内线性关系良好(r 2 ≥0.998),检出限(LOD)为0.0016~0.0039 μg/mL,定量限(LOQ)为0.0054~0.0128 μg/mL,当标准添加水平为0.02、0.1、0.2 μg/mL时,回收率为93.0%~110.3%。该方法结合自动化技术,对固相萃取条件精确控制,操作简便、快速、灵敏、准确,适合尿液中吗啡等4种阿片类物质快速测定,可用于海洛因吸食者的大规模监控,并能准确排除因服用含阿片类镇咳药导致的吗啡胶体金尿检假阳性。  相似文献   

7.
The simultaneous determination of usually employed anesthetics (procaine, lidocaine, and bupivacaine) has been developed and validated using CE with ultraviolet detection at 212 nm. The separation of these three drugs has been achieved in less than 7 min, using a temperature of 25ºC and 25 kV, with a 150 mM citrate buffer (pH 2.5) as BGE. Field‐amplified sample injection (FASI) has been used for on‐line sample preconcentration. Ultrapure water and ACN 50/50 (v/v) mixture gave the greatest enhancement factor when it was employed as an injection solvent. Injection voltage and time were optimized, being 13 kV and 13 s, the optimum values, respectively. To avoid the possible irreproducibility associated with the electrokinetic injection, an internal standard such as tetracaine, was employed. The instrumental detection limits (LOD S/N = 3) for the compounds ranged between 2.6 and 7.0 μg L−1 and the quantitation limits (LOQ S/N = 10) between 37.8 and 55.9 μg L−1. The detection limits obtained in real human urine samples ranged between 55.2 and 83.6 μg L−1 and the quantitation limits between 196.0 and 276.0 μg L−1. The proposed method has demonstrated its applicability to the analysis of these local anesthetics in urine samples without any pretreatment, allowing the rapid determination of these target analytes.  相似文献   

8.
A capillary zone electrophoresis method was developed for the simultaneous determination of seven phenolic acids, including protocatechuic aldehyde ( 1 ), salvianolic acid C ( 2 ), rosmarinic acid ( 3 ), salvianolic acid A ( 4 ), danshensu ( 5 ), salvianolic acid B ( 6 ), and protocatechuic acid ( 7 ), in Danshen and related medicinal plants. A running buffer composed of 20 mM sodium tetraborate adjusted to pH 9.0, and containing 12 mM β‐cyclodextrin as modifier. Baseline separation was achieved within 17 min running at the voltage of 20 kV, temperature of 25°C and detection wavelength of 280 nm. The relative standard deviations of migration time ranged from 0.2 to 0.7% and the peak area ranged from 1.5 to 3.7% for the seven analytes, indicating the good repeatability of the proposed method. The method was extensively validated by evaluating the linearity (R2 ≥ 0.9992), limits of detection (0.14–0.36 μg/mL), limits of quantification (0.47–1.19 μg/mL), and recovery (96.0–102.6%). Under the optimum conditions, samples of Danshen and related medicinal plants were analyzed using the developed method with high separation efficiency.  相似文献   

9.
用毛细管胶束电动色谱成功分离并测定了高粱和玉米中7种农药类环境激素(多菌灵、西玛津、莠去津、毒死蜱、溴氰菊酯、乙草胺和氯氰菊酯)的残留量。研究了电泳缓冲液及表面活性剂等因素的影响,在最佳分离条件(pH 9.0、20 mmol/L磷酸氢二钠+50 mmol/L SDS+5%乙腈为缓冲溶液,分离电压20 kV,检测波长222 nm,实验温度25℃,压力法进样,30 mbar×10 s)下,7种农药在28 min内得到基线分离,质量浓度与其峰面积在5.0~150μg.L-1范围内呈良好线性,检出限为0.6~3.0μg/L,回收率为97%~108%,相对标准偏差为2.2%~4.7%。该方法具有操作简单、快速方便及自动化程度高、重现性好等优点。  相似文献   

10.
A new spectrofluorimetric method for the simultaneous determination of canrenone and spironolactone in urine is proposed. The method is based on the different rates at which the two analytes react with hot sulfuric acid to form a trienone. The kinetic spectrofluorimetric data are processed by partial least-squares regression. The effects of sulfuric acid concentration and temperature on the system under study were also evaluated and the optimum values for carring out the reaction were 50% and 50 degrees C, respectively. The method was checked by analyzing urine samples that they contained both diuretics. The accuracy and the precision of the method were tested. The relative standard errors in the quantification of each analyte in all tested samples were 3.69 and 3.59%. The proposed method was validated by comparison with a high performance liquid chromatographic method for urine samples.  相似文献   

11.
A novel method for the simultaneous determination of sulfonamides (SAs) in water samples has been developed by using dispersive liquid–liquid microextraction (DLLME) coupled with CE. Orthogonal and Box–Behnken designs were employed together to assist the optimization of DLLME parameters, including volumes of extraction and disperser solvents, ionic strength, extraction time, and centrifugation time and speed as variable factors. Under the optimum extraction and detection conditions, successful separation of the five SAs was achieved within 5 min, and excellent analytical performances were attained, such as good linear relationships (R>0.980) between peak area and concentration for each SA from 0.5 to 50 μg/mL, low limits of detection for the five SAs between 0.020 and 0.570 μg/mL and the intra‐day precisions of migration time below 0.80%. The method recoveries obtained at fortified 10 μg/mL for three water samples ranged from 53.6 to 94.0% with precisions of 1.23–5.60%. The proposed method proved highly sensitive and selective, rapid, convenient and cost‐effective, showing great potential for the simultaneous determination of SAs in water samples.  相似文献   

12.
卢明华  李鑫  冯强  陈国南  张兰 《色谱》2010,28(3):253-259
采用自制的新型有机聚1-十六碳烯-三羟甲基丙烷三甲基丙烯酸酯[poly(1-hexadecene-co-TMPTMA)]整体柱,建立了一种同时分离检测6种利尿剂(氯噻酮、氢氯噻嗪、美托拉宗、吲哒帕胺、坎利酮和螺内酯)的毛细管电色谱(CEC)新方法,并成功应用于志愿者实际尿样的分析测定。在最佳实验条件下,6种利尿剂包含2种中性物质(坎利酮和螺内酯)和2种同分异构体(美托拉宗和吲哒帕胺)在11.0 min内得到基线分离,柱效分别达到218000、176000、143000、121000、108000、103000 塔板/m。6种利尿剂在1.15~86.0 μg/mL范围内呈良好的线性关系,相关系数R2 ≥0.990 8,检出限(LOD)在0.35~0.65 μg/mL范围内,回收率为81.9%~105%,相对标准偏差(RSD)小于4.7%。结果表明,实验所建立的基于poly(1-hexadecene-co-TMPTMA)整体柱的CEC方法,具有良好的重复性和稳定性,能够实现对多种利尿剂的同时分离检测。该方法已成功应用于来自志愿者实际尿样的分析,该方法可以用于利尿剂类药物的初筛。  相似文献   

13.
A rapid, accurate and reliable analytical method was developed for the simultaneous determination of five major anthraquinones, aloe-emodin, chrysophanol, emodin, physcion, and rhein, in radix Polygoni multiflori, a traditional Chinese herbal medicine. The method comprises a fast ultrasonic extraction with methanol and derivatization with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)+1% trimethylchlorosilane (TMCS) followed by capillary gas chromatographic (GC) separation. The effect of reaction time on the derivatization of anthraquinones was examined. A baseline separation of the anthraquinone and internal standard derivatives was achieved in 15min. The detection limits range from 0.22 to 0.60microg/mL for the five anthraquinones. The calibration curves are linear over the concentration range studied (from the detection limits to 40.0microg/mL) with the squares of correlation coefficients, R2, greater than 0.998. The developed method was successfully applied to the simultaneous determination of anthraquinones in radix P. multiflori samples. The peak identification was confirmed using GC-MS. The contents of anthraquinones in radix P. multiflori samples studied were 27.41, 289.6, 64.22, 202.1, 288.6microg/g for chrysophanol, emodin, aloe-emodin, physcion, rhein, respectively. All relative standard deviations are less than 3.2%. The recoveries range from 80.2% to 119.3% for the five analytes. To the authors' best knowledge, this is the first GC method reported for the simultaneous determination of the five anthraquinones in radix P. multiflori.  相似文献   

14.
靳淑萍  李萍  董树清  王清江  方禹之 《色谱》2009,27(2):229-232
采用毛细管电泳-电化学检测法(CE-ED)对中药黄芪的主要活性成分芦丁、阿魏酸、香草酸、绿原酸、槲皮素和咖啡酸进行了分离和测定。分别考察了工作电极电位、运行缓冲液的pH值和浓度、分离电压和进样时间等实验参数对实验结果的影响。在优化的实验条件下,以直径300 μm的碳圆盘电极为工作电极,检测电位为+0.95 V(相对于饱和甘汞电极),在10 mmol/L硼酸盐(pH 8.2)的运行缓冲溶液中,上述6种活性成分能在17 min内实现很好的基线分离,被测物浓度与峰电流在3个数量级范围呈良好的线性关系,检出限(S/N=3)范围为78~110 μg/L。在不同的加标水平下,6种活性成分的平均回收率为96.0%~103.0%,相对标准偏差为1.9%~3.6%(n=3)。该方法样品处理简单,无需预富集,已应用于实际样品的分析,并获得了令人满意的结果。  相似文献   

15.
The presented study deals with the off-line coupling of preparative isotachophoresis (pITP) with on-line combination of capillary zone electrophoresis with electrospray mass spectrometric detection (CZE-ESI-MS) used for the analysis of therapeutic peptides (anserine, carnosine, and buserelin) in complex matrix (urine). Preparative capillary isotachophoresis, operating in a discontinuous fractionation mode in column-coupling configuration, served as a sample pretreatment technique to separation, and fractionation of mixture of therapeutic peptides present in urine at low concentration level. The fractions isolated by pITP procedure were subsequently analyzed by capillary zone electrophoresis with electrospray mass spectrometric detection. Acetic acid at 200 mmol L(-1) concentration served as background electrolyte in CZE stage and it is compatible with MS detection in positive ionization mode. In pITP fractionation procedure, sodium cation (10 mmol L(-1) concentration) as leading ion and beta-alanine as terminating ion (20 mmol L(-1) concentration) were used. While using CZE-ESI-MS, the limits of detection were 0.18 μg mL(-1) for carnosine, 0.17 μg mL(-1) for anserine and 0.64 μg mL(-1) for buserelin in water and 0.19 μg mL(-1) for carnosine, 0.50 μg mL(-1) for anserine and 0.74 μg mL(-1) for buserelin in 10 times diluted urine, respectively. The cleaning power of pITP sample pretreatment was proved as the peptides provided the higher MS signals at lower concentration levels resulting from the minimized matrix effects. The quality of obtained MS/MS spectra was very good so that they can provide information about the structure of analytes, and they were used for verification of the analytes identities. The pITP pretreatment improved the detection limits of the analyzed therapeutic peptides at least 25 times compared to the CZE-ESI-MS itself.  相似文献   

16.
《Electrophoresis》2017,38(24):3168-3176
The purpose of this study was to develop a comprehensive, rapid and practical capillary electrophoresis (CE) method for quality control (QC) of Guan‐Xin‐Ning (GXN) injection based on fingerprint analysis and simultaneous separation and determination of seven constituents. In fingerprint analysis, a capillary zone electrophoresis (CZE) method with a running buffer of 30 mM borate solution (pH 9.3) was established. Meanwhile, ten batches of samples were used to establish the fingerprint electropherogram and 34 common peaks were obtained within 20 min. The RSD of relative migration times (RMT) and relative peak areas (RPA) were less than 5%. In order to further evaluate the quality of GXN injection, a micellar electrokinetic chromatography (MEKC) method was developed for simultaneous separation and determination of bioactive constituents. Seven components reached baseline separation with a running buffer containing 35 mM SDS and 45 mM borate solution (pH 9.3). A good linearity was obtained with correlation coefficients from 0.9906 to 0.9997. The LOD and LOQ ranged from 0.12 to 1.50 μg/mL and from 0.40 to 4.90 μg/mL, respectively. The recoveries ranged between 99.0 and 104.4%. Therefore, it was concluded that the proposed method can be used for full‐scale quality analysis of GXN injection.  相似文献   

17.
Two selective and accurate chromatographic methods are presented for simultaneous quantitation of spironolactone (SP) and furosemide (FR) and canrenone (CN), the main degradation product and the main active metabolite of SP. Method A was HPTLC, where separation was completed on silica gel HPTLC F254 plates using ethyl acetate–triethylamine–acetic acid (9:0.7:0.5, by volume) as a developing system and UV detection at 254 nm. Method B was a green isocratic RP‐HPLC utilizing a C18 (4.6 × 100 mm) column, the mobile phase consisting of ethanol–deionized water (45: 55, v/v) and UV estimation at 254 nm. Adjustment of flow rate at 1 mL/min and pH at 3.5 with glacial acetic acid was done. Regarding the greenness profile, the proposed RP‐HPLC method is greener than the reported one. ICH guidelines were followed to validate the developed methods. Successful applications of the developed methods were revealed by simultaneous determination of FR, SP and CN in pure forms and plasma samples in the ranges of 0.2–2, 0.05–2.6 and 0.05–2 μg/band for method A and 5–60, 2–60 and 2–60 μg/mL for method B for FR, SP and CN, respectively.  相似文献   

18.
利用液相色谱-三重四极杆质谱(LC-MS/MS)联用技术,建立了人尿液中7种有机磷酸酯代谢产物-有机磷酸二酯的检测方法.针对不同理化性质的有机磷酸二酯,采用固相萃取技术进行富集净化,筛选出高效的固相萃取柱,并对其洗脱条件进行优化;同时,对流动相和质谱参数进行优化,获取用于各代谢产物定性与定量分析的特征离子对.研究结果表明,前处理采用Oasis WAX固相萃取柱富集、2 mL含5%氨水的甲醇和2 mL甲醇洗脱目标物,除磷酸二乙酯(DEP,17.8%~36.2%)外,其余目标化合物回收率均在60.5%~104.0%之间.在优化的液相色谱条件下,7种化合物可达到完全基线分离.7种有机磷酸二酯的检测限和定量限分别在0.005~0.2μg/L和0.02~0.5μg/L之间,日内和日间精密度结果(RSD≤15.4%)表明,本方法具有较好的稳定性和重现性.本方法用于普通人群尿液中有机磷酸二酯的检测,7种化合物在尿液中均有检出,总浓度在0.5~6.7μg/L之间.  相似文献   

19.
This work reported that ionic liquid (IL) ([Bmim] [PF6]) and sulfobutylether‐β‐CD (SBE‐β‐CD) were used as electrolyte additives for the separation and determination of camptothecin (CPT) alkaloids by CZE. Separation parameters such as the buffer type, pH, and concentration of the running buffer, the concentration of SBE‐β‐CD and IL, temperature, and separation voltage were all investigated in order to achieve the maximum possible resolution. The four analytes were baseline separated within 10 min in capillary at the separation voltage of 15 kV with a running buffer consisting of 20 mM borate buffer, 20 mM IL, and 100 mM SBE‐β‐CD at pH 9.0. Under such conditions, good linearity about two orders of magnitudes of peak areas was achieved for the investigated CPT alkaloids with the correlation coefficients ranging from 0.9946 to 0.9985. For all analytes, detection limits (S/N = 3) and quantitation limits (S/N = 10) range from 0.05 to 0.92 μg/mL and 0.17 to 3.06 μg/mL, respectively. The proposed method has not only been successfully applied to the separation and determination of CPT alkaloids but also showed that IL seemed to be a promising additive in CZE separation.  相似文献   

20.
本文采用邻苯二甲醛(OPA)为柱前衍生化试剂,用毛细管电泳-电化学检测(CE—ED)法测定酱油中组胺的含量。以直径300μm的碳圆盘电极为工作电极,50mmol/L硼砂(pH8.7)为运行缓冲液,对组胺和组氨酸的分离检测条件进行优化。在优化条件下,组胺和组氨酸二组分可在12min内完全分离,检出限分别为7.5&#215;10^-7g/mL和5.0&#215;10^-4g/mL。该方法已经成功用于实际样品的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号