首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ethylene glycol) grafted onto carboxyl‐terminated multi‐walled carbon nanotubes were prepared by the sol–gel technique as a stationary phase for stir bars. The analytical methodology included stir bar sorptive extraction with micellar desorption followed by liquid chromatography. Polycyclic aromatic hydrocarbons were used as the model compounds to evaluate the extraction performance. The extraction efficiency, for the determination of polycyclic aromatic hydrocarbons from water samples, was optimized based on a chemometrics approach. The effect of the experimental parameters on the extraction response was investigated and the optimum extraction conditions were selected. Under the optimum conditions, the proposed method showed a good linearity within the different ranges for different analytes (e.g. 0.05–500 ng/mL for phenanthrene), a square of the correlation coefficient was higher than 0.999, and an appropriate limit of detection in the range of 0.013–0.072 ng/mL. The recoveries in all cases were above 94%, with relative standard deviations below 2.4%.  相似文献   

2.
Stir bar sorptive extraction is a powerful technique for the extraction and analysis of organic compounds in aqueous matrices. Carbonyl compounds are ubiquitous components in rainwater, however, it is a major challenge to accurately identify and sensitively quantify carbonyls from rainwater due to the complex matrix. A stir bar sorptive extraction technique was developed to efficiently extract carbonyls from aqueous samples following chemical derivatization by O‐(2,3,4,5,6‐pentafluorobenzyl) hydroxylamine hydrochloride. Several commercial stir bars in two sizes were used to simultaneously measure 29 carbonyls in aqueous samples with detection by gas chromatography with mass spectrometry. A 100 mL aqueous sample was extracted by stir bars and the analytes on stir bars were desorbed into a 2 mL solvent solution in an ultrasonic bath. The preconcentration Coefficient for different carbonyls varied between 30 and 45 times. The limits of detection of stir bar sorptive extraction with gas chromatography mass spectrometry for carbonyls (10–30 ng/L) were improved by ten times compared with other methods such as gas chromatography with electron capture detection and stir bar sorptive extraction with high‐performance liquid chromatography and mass spectrometry. The technique was used to determine carbonyls in rainwater samples collected in York, UK, and 20 carbonyl species were quantified including glyoxal, methylglyoxal, isobutenal, 2‐hydroxy ethanal.  相似文献   

3.
Polar vinyl monomers have been used for the synthesis of several polymer monoliths, to serve as novel coatings for stir bar sorptive extraction; the monovinyl monomers 2‐hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) monomethacrylate) (PEGMA) were copolymerized with (apolar) divinylbenzene (DVB) and/or pentaerythritol triacrylate (PETRA), both of which are cross‐linking agents. After the optimization of the most important synthesis parameters, which included the ratio between total monomers and porogen, the nature of the porogen, and the monomer ratios, inter alia, three mechanically stable, polar monolithic coatings for stir bar sorptive extraction were obtained that were based on poly(HEMA‐co‐DVB), poly(HEMA‐co‐PETRA), and poly(PEGMA‐co‐PETRA). Thereafter, and in order to evaluate the hydrophilicity of the resulting monoliths, they were applied as materials in the stir bar sorptive extraction of a group of emerging pollutants with a wide range of polarities. The results showed that both the poly(HEMA‐co‐DVB) and poly(PEGMA‐co‐PETRA) materials could be used to extract both polar and nonpolar compounds by stir bar sorptive extraction, in an effective manner. Taking into account the desired chemical and morphological properties, as well as the extraction efficiencies, the poly(PEGMA‐co‐PETRA) material seemed to be a particularly promising monolith for application as a novel coating in stir bar sorptive extraction.  相似文献   

4.
A sensitive microextraction method based on a new poly(methacrylic acid‐ethylene glycol dimethacrylate‐N‐vinylcarbazole) monolithic capillary column, coupled with gas chromatography and electron capture detection, was established for the determination of three benzodiazepines (estazolam, alprazolam, and triazolam) in urine and beer samples. Owing to the abundant π electrons and polar surface of N‐vinylcarbazole, N‐vinylcarbazole‐incorporated monolith showed a higher extraction performance than neat poly(methacrylic acid‐ethylene glycol dimethacrylate) because of the enhanced π–π stacking interactions derived from the π‐electron‐rich benzene groups from N‐vinylcarbazole. The monolith exhibited a homogeneous and continuous structure, good permeability, and a long lifetime. Factors affecting the extraction such as solution pH, salt concentration, sample volume, desorption solvent, and desorption volume were investigated. Under the optimized conditions, limits of detection of 0.011–0.026 ng/mL were obtained. The one‐column and column‐to‐column precision values were ≤7.2 and ≤9.8%, respectively. The real samples were first diluted with deionized water and then treated by the monolith microextraction before gas chromatography analysis. The recoveries were 81.4–93.3 and 83.3–94.7% for the spiked samples, with relative standard deviations of 4.1–8.1 and 3.8–8.5%, respectively. This method provides an accurate, simple, and sensitive detection platform for drug analysis.  相似文献   

5.
A stir bar for sorption extraction based on monolithic material (SBSEM) was prepared in this study. The monolithic material was obtained by in situ copolymerization of octyl methacrylate and ethylene dimethacrylate in the presence of a porogen solvent containing 1-propanol, 1,4-butanediol, and water with azobisisobutyronitrile as the initiator. The influences of polymerization parameters and the thickness of monolithic materials on the adsorption and desorption efficiencies were investigated, using naphthalene, phenanthrene and fluoranthene as detected solutes. The results show that monolithic material possessed good permeability resulting in fast adsorption and desorption for detected solutes. Spiked seawater samples containing eight polycyclic aromatic hydrocarbons (PAHs) and urine samples containing four anabolic steroids were preliminarily analyzed by using the sorptive bars and liquid desorption followed by high performance liquid chromatography with diode array detection. The results demonstrate that prepared stir bar was suitable for preconcentration of both apolar and polar analytes. The enrichment factors for phenanthrene, anthracene and pyrene were 150, 134 and 189, respectively. The SBSEM shows good batch-to-batch reproducibility and good stability, and can be reused a least 10 times for the extraction of polycyclic aromatic hydrocarbons in seawater.  相似文献   

6.
In this work, a novel magnetic nanomaterial functionalized with a molecularly imprinted polymer was prepared for the extraction of protoberberine alkaloids. Molecularly imprinted polymers were made on the surface of Fe3O4 nanoparticles by using berberine as template, acetonitrile/water as porogen, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross‐linker. The optimized molar ratio of template/functional monomer was 1:7. The polymeric magnetic nanoparticles were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The stability and adsorption capacity of the molecularly imprinted polymers were investigated. The molecularly imprinted polymers were used as a selective sorbent for the magnetic molecularly imprinted solid‐phase extraction and determination of jatrorrhizine, palmatine, and berberine. Extraction parameters were studied including loading pH, sample volume, stirring speed, and extraction time. Finally, a magnetic molecularly imprinted solid‐phase extraction coupled to high‐performance liquid chromatography method was developed. Under the optimized conditions, the method showed good linear range of 0.1–150 ng/mL for berberine and 0.1–100 ng/mL for jatrorrhizine and palmatine. The limit of detection was 0.01 ng/mL for berberine and 0.02 ng/mL for jatrorrhizine and palmatine. The proposed method has been applied to determine protoberberine alkaloids in Cortex phellodendri and rat plasma samples. The recoveries ranged from 87.33–102.43%, with relative standard deviation less than 4.54% in Cortex phellodendri and from 102.22–111.15% with relative standard deviation less than 4.59% in plasma.  相似文献   

7.
A fast and sensitive analytical method based on stir bar sorptive extraction technology with gas chromatography and mass spectrometry was developed to simultaneously analyze 18 kinds of polychlorinated biphenyls and 20 kinds of organochlorine pesticides in aqueous samples. A long adsorption time and small sample volume, which are problems encountered in conventional methods of stir bar sorptive extraction, were effectively solved by simultaneously using multiple stir bars for enrichment with sequential cryofocusing and merged injection. Optimized results showed good linear coefficients in the range of 10–500 ng/L and the method detection limits of 0.12–2.07 ng/L for polychlorinated biphenyls and organochlorine pesticides. The recovery ratios of the spiked samples at different concentrations were between 64.7 and 111.0%, and their relative standard deviations ranged from 0.9 to 17.6%. Four types of the studied compounds were determined in Qiantang River water samples, and their contents were between 0.82 and 5.00 ng/L.  相似文献   

8.
A simple, sensitive, and reliable procedure based on stir bar sorptive extraction coupled with high‐performance liquid chromatography was applied to simultaneously extract and determine three semipolar nitrosamines including N‐nitrosodibutylamine, N‐nitrosodiphenylamine, and N‐nitrosodicyclohexylamine. To achieve the optimum conditions, the effective parameters on the extraction efficiency including desorption solvent and time, ionic strength of sample, extraction time, and sample volume were systematically investigated. The optimized extraction procedure was carried out by stir bars coated with polydimethylsiloxane. Under optimum extraction conditions, the performance of the proposed method was studied. The linear dynamic range was obtained in the range of 0.95–1000 ng/mL (r = 0.9995), 0.26–1000 ng/mL (r = 0.9988) and both 0.32–100 ng/mL (r = 0.9999) and 100–1000 ng/mL (r = 0.9998) with limits of detection of 0.28, 0.08, and 0.09 ng/mL for N‐nitrosodibutylamine, N‐nitrosodiphenylamine, and N‐nitrosodicyclohexylamine, respectively. The average recoveries were obtained >81%, and the reproducibility of the proposed method presented as intra‐ and interday precision were also found with a relative standard deviation <6%. Finally, the proposed method was successfully applied to the determination of trace amounts of selected nitrosamines in various water and wastewater samples and the obtained results were confirmed using mass spectrometry.  相似文献   

9.
A stir rod sorptive extraction (SRSE) with monolithic polymer as coating was proposed to avoid the friction loss of coating during the stirring process. In our study, poly(2-acrylamide-2-methylpropanesulfonic acid-co-octadecyl methacrylate-co-ethylene glycol dimethacrylate) [poly(AMPS-co-OCMA-co-EDMA)] monolithic polymer was used as a coating of SRSE. The effect of concentration of porogen on SRSE performance was studied. Four fluoroquinolones (FQs) were selected as testing analytes to evaluate the extraction efficiency of SRSE. To achieve the optimum extraction conditions of SRSE towards FQs, several parameters, including extraction time, extraction temperature, stirring rate, sample solution pH and contents of inorganic salt in the sample solution were investigated. Under the optimized conditions of SRSE, a method for the determination of FQs in honey sample was proposed based on the combination of SRSE with liquid chromatography and electrospray ionization mass spectrometry (SRSE/LC/ESI-MS). The detection limits (LODs) of the proposed method for four FQs ranged from 0.06 to 0.14 ng/g and the recoveries were in the range of 70.3–122.6% at different concentrations for honey samples. Good method reproducibility was found as intra- and inter-day precisions, yielding the relative standard deviations less than 11.9% and 12.4%, respectively. The results show that SRSE with poly(AMPS-co-OCMA-co-EDMA) monolithic polymer as coating possessed good extraction capacity towards FQs in honey samples. Finally, the monolithic polymer coated stir rod was demonstrated to be reused at least 60 times.  相似文献   

10.
A fast, simple, and reliable analytical method for the determination of medium‐level volatile thiols in wines is presented. Stir bar sorptive extraction using ethylene glycol‐silicone coated stir bars has been used in combination with thermal desorption gas chromatography with mass spectrometry for the analysis of 4‐mercapto‐4‐methylpentan‐2‐one, 2‐furanmethanethiol, 3‐mercaptohexyl acetate, and 3‐mercaptohexanol in wine. Optimization of the extraction technique was performed using a two‐level fractional factorial design. For the extraction step, the optimum conditions were: Ethylene glycol and silicone coated stir bars, pH at 3.5, sample volume of 25 mL, extraction time of 90 min, NaCl content 4.0 g, and stirring speed at 500 rpm. The optimized method achieved good linearity for all studied compounds (r2 > 0.995) and it provided detection limits of 21.52, 0.36, 0.73, and 2.55 μg/L for 4‐mercapto‐4‐methylpentan‐2‐one, 2‐furanmethanethiol, 3‐mercaptohexyl acetate, and 3‐mercaptohexanol, respectively. It was repeatable, with precisions lower than 18% relative standard deviation for both intraday and interday repeatability. The developed procedure is suitable for the determination of these kinds of compounds when they are present at medium concentration levels. It was finally applied to real wine samples with negative aroma derived from the high concentration levels of these compounds.  相似文献   

11.
A novel poly(methyl methacrylate–ethyleneglycol dimethacrylate–acrylic acid) film has been introduced for coating on stir bars to sorptive extraction (SBSE). The effects of different contents of porogen, monomer, cross-linker, modifier and initiator during the solvent or bulk polymerization step on the mechanical property and solvent resistant of prepared sorptive stir bars were investigated. The evaluation of results were caused to obtain the four prepared sorptive stir bars with good mechanical stability and excellent resistance to organic solvents. The extraction efficiency of these prepared sorptive stir bars were investigated by liquid desorption-liquid chromatography-ultraviolet detection (LD-LC-UV) using N-Nitrosodiphenylamine as target analyte. SBSE assays showed the sorptive stir bar that prepared using solution polymerization method had the better recovery for N-Nitrosodiphenylamine in water samples. This sorptive stir bar showed good linearity and acceptable recoveries, as well as advantages such as sensitivity, simplicity, low cost and high feasibility. Based on atomic force microscopy (AFM) results, the average pore size of optimum prepared stir bar using solvent polymerization method was obtained ~9 nm. The thermal gravity (TG) and differential scanning calorimetric (DSC) results showed this polyacrylate film has high thermal stability.  相似文献   

12.
杜梨  李娜  刘美琨  王翰云  张倩影  王曼曼  王学生 《色谱》2019,37(12):1343-1348
以[2-(丙烯酰氧基)乙基]三甲基氯化铵(DAC)为单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂在注射器中制备聚合物整体柱,用其固相萃取尿液中溴西泮(BRZ)、劳拉西泮(LRZ)和地西泮(DZP)3种苯二氮(卄卓)类药物(BZDs),并采用高效液相色谱法(HPLC)分析。实验考察了整体柱聚合时间及固相萃取条件(淋洗溶液、洗脱溶剂种类和体积)对BZDs萃取效率的影响。结果表明,仅聚合4 h得到的整体柱对BZDs吸附效率为100%。取尿液样品4 mL上样,用4 mL H2O冲洗,1 mL乙酸乙酯洗脱,采用高效液相色谱分析。在最优条件下,3种BZDs在4.0~1000 ng/mL范围内线性关系良好(r=0.999),检出限(S/N=3)和定量限(S/N=10)分别为1.0~1.2 ng/mL和3.3~4.0 ng/mL;在10、25和50 ng/mL加标水平下回收率为81.4%~102%,日内(n=3)和日间(n=3)相对标准偏差分别为1.2%~4.5%和2.5%~8.3%。该整体柱可对尿液中3种BZDs有效净化,且富集达12~15倍。方法构筑的聚合物整体柱制备简单,萃取高效,可成功用于尿液中3种BZDs的分析。  相似文献   

13.
In this study, molecularly imprinting technology and stir bar absorption technology were combined to develop a microextraction approach based on a molecularly imprinted polymeric stir bar. The molecularly imprinted polymer stir bar has a high performance, is specific, economical, and simple to prepare. The obtained naftopidil‐imprinted polymer‐coated bars could simultaneously agitate and adsorb naftopidil in the sample solution. The ratio of template/monomer/cross‐linker and conditions of template removal were optimized to prepare a stir bar with highly efficient adsorption. Fourier transform infrared spectroscopy, scanning electron microscopy, selectivity, and extraction capacity experiments showed that the molecularly imprinted polymer stir bar was prepared successfully. To utilize the molecularly imprinted polymer stir bar for the determination of naftopidil in complex body fluid matrices, the extraction time, stirring speed, eluent, and elution time were optimized. The limits of detection of naftopidil in plasma and urine sample were 7.5 and 4.0 ng/mL, respectively, and the recoveries were in the range of 90–112%. The within‐run precision and between‐run precision were acceptable (relative standard deviation <7%). These data demonstrated that the molecularly imprinted polymeric stir bar based microextraction with high‐performance liquid chromatography was a convenient, rapid, efficient, and specific method for the precise determination of trace naftopidil in clinical analysis.  相似文献   

14.
A direct, simple and solvent‐free method based on headspace stir bar sorptive extraction and thermal desorption gas chromatography with mass spectroscopy was developed to determine 13 musk fragrances (six polycyclic musks, three nitro musks and four macrocyclic musks) in sludge without sample treatment. The optimal headspace stir bar sorptive extraction conditions were achieved when a polydimethylsiloxane stir bar was exposed for 45 min in the headspace of a 10 mL vial filled with 100 mg of sludge mixed with 0.2 mL of water stirred at 750 rpm at 80°C. The stir bar was then desorbed in the thermal desorption gas chromatography and mass spectrometry system, obtaining limits of detection between 5 and 30 ng/g. The method applicability was tested with sewage sludge from two urban wastewater treatment plants and from a potable water treatment plant. Results showed galaxolide and tonalide to be the most abundant musk fragrances found in wastewater treatment plants with maximal concentrations of 9240 and 7500 ng/g, respectively. Maximum concentration levels between 35 and 635 ng/g were found for musk ketone, musk moskene, traseolide, phantolide and celestolide in this kind of samples. Concentrations below the limits of quantitation of phantolide, galaxolide, tonalide and musk ketone were found in sludge from a potable water treatment plant.  相似文献   

15.
A solid‐phase microextraction (SPME) fiber coated with poly(methacrylic acid‐ethylene glycol dimethacrylate) coupled to GC with a micro electron‐capture detector was developed for the determination of four chlorphenols in water samples for the first time. A novel and simple method for the preparation of this novel SPME fiber was proposed by copolymerization of methacrylic acid and ethylene glycol dimethacrylate in an appropriate solvent using a glass capillary as a “mold”. The factors affecting the polymerization were optimized in detail. Furthermore, the extraction performance of the poly(methacrylic acid‐ethylene glycol dimethacrylate) fiber was evaluated. Moreover, experimental headspace‐SPME parameters, such as extraction temperature, extraction time, salt concentration, stirring speed, and pH, were optimized by orthogonal array experimental designs. Under the optimized conditions, the target analytes were linear in the range of 0.2–50 ng/mL, and the correlation coefficients were all greater than 0.99. RSD was less than 8.9%, and the detection limits were in the range of 0.1–10 ng/L. Four cholorphenols were detected from tap and lake water samples using the proposed method, with the recoveries of spiked natural water samples were ranged from 91.8 to 110.8, and 90.6 to 111.4% for tap and lake water samples, respectively.  相似文献   

16.
A deep eutectic solvent based magnetic nanofluid was coupled with stir bar sorptive dispersive microextraction as a hyphenated sample preparation technique. The neodymium core magnetic stir bar was coated physically with nanofluid of magnetic carbon nanotube nanocomposites and deep eutectic solvents. The prepared nanofluid has magnetic and strong sorbing properties and is compatible with gas chromatography. In this nanofluid, the deep eutectic solvent acts simultaneously as both carrier and stabilizer for magnetic nanotubes. The predominant experimental variables affecting the extraction efficiency of nitroaromatic compounds were evaluated. Under the optimized conditions, the limit of detection and enrichment factor were in the range of 0.2–4.9 ng/L and 852–1480, respectively. The relative standard deviations were between 5.6 and 10.2% (= 6). Method validation was performed by both spiking–recovery method and comparison of results with other methods. Finally, the proposed method was successfully applied for the extraction and pre‐concentration of nitroaromatic explosives in water samples, followed by determination by gas chromatography with micro‐electron capture detection.  相似文献   

17.
For studies on the excretion of drugs into milk a sensitive high-performance liquid chromatographic assay was developed to quantitate diazepam and nordazepam in the milk and plasma of humans and rabbits in the presence of their major metabolites, oxazepam and temazepam. Flurazepam was used as an internal standard. The assay involves extractions with diethyl ether and an additional acid clean-up step. Chromatographic separation was achieved by a LiChrospher 60 RP-select B (5 microns) column and KH2PO4- acetonitrile (69:31, v/v) adjusted to pH 2.80 as a mobile phase. The same extraction and chromatographic conditions were suited to both types of samples, milk and plasma. The limits of determination using ultraviolet detection at 241 nm was for diazepam 20 ng/ml and for nordazepam 15 ng/ml. The absolute recoveries of diazepam, nordazepam and flurazepam in human milk were 84, 86 and 92% and in human plasma 97, 89 and 94%, respectively. The within- and between-day accuracy and precision for diazepam and nordazepam in milk and plasma at all concentrations tested (20-1500 ng/ml) were better than 8%. The high fat content which occurs in rabbit milk presented no limitation for the extraction of lipophilic diazepam: the method was successfully used to monitor milk and plasma concentrations of diazepam and nordazepam in lactating New Zealand White rabbits during 26-h infusions of diazepam (1.4 mg/h).  相似文献   

18.
The purpose of this paper is to introduce a novel hollow fiber stir bar sorptive extraction for collecting and determining of phthalic acid esters in environmental and biological matrices. Shell–core ZrO2/SiO2 composite microspheres and porous C18 silica microspheres were compared as the sorbents, which were loaded in the lumen of a microporous hollow fiber membrane. A thin stainless‐steel wire was also inside of the hollow fiber membrane acting as the magnetic stirrer, thus affording the procedures like stir bar sorptive extraction to perform the active trapping of the analytes. Variables affecting the extraction (salt addition and pH of samples, extraction temperature, and time) and desorption (microwave time and eluted solvents) have been optimized. Under the optimal conditions, good linearity (r > 0.9968) of all calibration curves was obtained in validation experiments. And the limits of quantification ranged from 0.01 to 1000 ng/mL. The recoveries in different matrices were in the range of 64.90–112.60% with relative standard deviations less than 8.60%. The present work demonstrated the applicability of the developed method for the determination of phthalic acid esters in environmental and biological sample, allowing the selective extraction of phthalate esters in complex samples with low consumption of organic solvents and no sample clean‐up.  相似文献   

19.
Benzotriazole UV stabilizers are emerging compounds used in personal care products and can enter surface water after passing through wastewater treatment plants without being removed. Because these analytes are strongly hydrophobic, there is an environmental risk of accumulation in solid matrices and magnification through the trophic chain. In this work, a method based on stir bar sorption extraction with liquid desorption is presented for the extraction of benzotriazole UV stabilizers from water samples. Stir bar sorptive extraction was combined with ultra‐high performance LC with MS/MS detection. All important factors affecting the stir bar sorptive extraction procedure are discussed, and the optimized method was applied to seawater and wastewater samples from Gran Canaria Island, providing good selectivity and sensitivity with LODs and limits of quantification in the range of 18.4–55.1 and 61.5–184 ng/L, respectively. Recoveries between 68.4–92.2% were achieved for the more polar compounds, whereas the recoveries were lower for the two less polar compounds, most likely due to their strong absorption into the polydimethylsiloxane stir bar phase that does not allows the complete desorption. The repeatability studies gave RSDs of between 6.45 and 12.6% for all compounds in the real samples.  相似文献   

20.
A stir bar sorptive extraction method coupled with deep eutectic solvent based solidification of floating organic droplets–dispersive liquid–liquid microextraction has been used for the simultaneous derivatization and extraction of some acidic pesticides in tomato samples. In this method, initially the analytes are adsorbed on a coated stir bar from tomato juice filled in a narrow tube. After extraction, the stir bar is removed and a water–miscible deep eutectic solvent is used to elute the analytes. Afterward, a derivatization agent and a water–immiscible deep eutectic solvent (as an extraction solvent) with melting point near to room temperature are added to the obtained eluant at µL–levels and the obtained mixture is rapidly injected into deionized water. Under the optimum conditions, the introduced method indicated high enhancement (1543–3353) and enrichment (2530–2999) factors, low limits of detection (7–14 ng/L) and quantification (23–47 ng/L), good linearity (r2 ≥ 0.9982), and satisfactory repeatabilities (relative standard deviation ≤12% for intra– and inter–day precisions at a concentration of 100 ng/L of each analyte). Finally, the proposed method was applied in analysis of the analytes in tomato samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号