首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to improve the permeation and adsorption properties of graphene oxide, heteroatoms and deep eutectic solvent were introduced in this study. After being modified, the structural properties of graphene oxide were improved and the materials were applied to the determination of myricetin and rutin in tea sample by pipette‐tip solid‐phase extraction method. The materials were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X‐Ray diffractomer, energy dispersive spectroscopy, atomic force microscope, and specific surface area by Brunauer–Emmett–Teller N2 adsorption desorption analysis. Meanwhile, they were tested by static and dynamic adsorption. The result showed that the materials after modifying had better adsorption amount for myricetin and rutin than graphene oxide. The calibration graphs of myricetin and rutin in MeOH were linear over 0.10–500.00 µg/mL, and the limits of detection and quantification were in the range of 0.00546–0.0182 µg/mL and 0.00741–0.0247 µg/mL, respectively. A reliable analytical method was developed for recognition targets in tea sample by DES modified nitrogen‐doped graphene oxide with satisfactory extraction recoveries (myricetin 99.77%, rutin 98.14%). It was potential for the rapid purification of myricetin and rutin in tea sample combined with the pipette‐tip solid‐phase extraction.  相似文献   

2.
We present a simple method for the fabrication of a magnetic amino‐functionalized zinc metal‐organic framework based on a magnetic graphene oxide composite. The resultant framework exhibited a porous 3D structure, high surface area and good adsorption properties for nitrogen‐containing heterocyclic fungicides. The adsorption process and capacity indicated that the primary adsorption mechanism might be hydrogen bonding and π‐π conjugation. In addition, an optimized protocol for magnetic solid phase extraction was developed (such as adsorbent content, pH, and desorption solvent), and utilized for the extraction of nitrogen‐containing heterocyclic fungicides from vegetable samples. Quantitation by high performance liquid chromatography coupled with tandem mass spectrometry offered a detection limit of 0.21–1.0 μg/L (S/N = 3) with correlation coefficients larger than 0.9975. These results demonstrate that magnetic amino‐functionalized zinc metal‐organic framewor is a promising adsorbent for the extraction and quantitation of nitrogen‐containing heterocyclic fungicides.  相似文献   

3.
In this work, mesoporous silica (SBA‐15‐NH2) was used as an efficient adsorbent for extraction of chlordiazepoxide from different samples based on dispersive nanomaterial‐ultrasound assisted microextraction followed by high‐performance liquid chromatography. The prepared sorbent was characterized by fourier transform infrared spectroscopy, scanning electron microscopy, low‐angle X‐ray diffraction, thermal analysis, and N2 adsorption‐desorption surface area measurement. Several variables affecting the extraction efficiency of the chlordiazepoxide, including the amounts of adsorbent, time of adsorption, pH and volume of desorption solvent were optimized by central composite design combined with desirability function. The values of variables were set as 10 mg of SBA‐15‐NH2, 15 min adsorption time, pH = 7.3 and 1 mL methanol. The linear response (0.998) was obtained in the range of 0.006–10 µgmL?1 with detection limit 0.0014 µg/mL and extraction recovery was in the range of 91–96% with relative standard deviation < 6%.  相似文献   

4.
A green and novel deep eutectic solvent modified graphene was prepared and used as a neutral adsorbent for the rapid determination of sulfamerazine in a river water sample by pipette‐tip solid‐phase extraction. Compared with conventional graphene, deep eutectic solvent modified graphene can change the surface of graphene with wrinkled structure and higher selective extraction ability. The properties of deep eutectic solvent modified graphene and graphene were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Static adsorption showed deep eutectic solvent modified graphene had a higher adsorption ability (18.62 mg/g) than graphene. Under the optimum conditions, factors such as kinds of washing solvents and elution solvents and volume of elution solvent were evaluated. The limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of sulfamerazine were in the range of 91.01–96.82% with associated intraday relative standard deviations ranging from 1.63 to 3.46% and interday relative standard deviations ranging from 0.68 to 3.84%. Deep eutectic solvent modified graphene showed satisfactory results (recovery was 95.38%) and potential for rapid purification of sulfamerazine in river water sample in combination with the pipette‐tip solid‐phase extraction method.  相似文献   

5.
We report the synthesis of mesoporous SBA‐15 type silica bearing ionic imidazolium substructures. Surface functionalization was achieved via post‐synthesis grafting reactions using bis‐silylated imidazolium precursors onto a mesoporous SBA‐15 type silica support. The grafting reactions were monitored via solid‐state NMR spectroscopy, nitrogen sorption, transmission electron microscopy and thermogravimetry. Post‐synthesis grafting is the most convenient way to achieve highly stable functionalized solids displaying excellent accessibility of the immobilized functional groups combined with high chemical stability. The solids obtained via post‐synthesis grafting reactions appeared as highly efficient and reusable heterogeneous organocatalysts for Henry reactions and the cycloadditions of CO2 to epichlorohydrin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Considering that the determination of pyrethroid residues is of value for the safety of food, a new poly(ionic liquid)‐functionalized magnetic mesoporous nanoparticle was designed and used as an adsorbent in magnetic solid‐phase extraction for the enrichment of eight pyrethroids. The porous structure and large surface area of the mesoporous silica shell endow the adsorbent with abundant binding sites. In contrast to the reported poly(ionic liquids) with only one kind of functional group in the cationic part, the new poly(ionic liquids) with mixed cyano and phenyl groups in cationic part matched the chemical structure of the analytes to improve extraction efficiency. Under the optimum conditions, an effective method was established for the determination of eight pyrethroids in apples. Adsorption equilibrium can be quickly reached in 1 min, greatly decreasing the extraction time. The linearity range was found to be 10–200 ng/g, and the detection limits ranged from 0.24 to 1.99 ng/g. Recoveries of analytes in apple samples ranged from 87.3 to 119.0%, with relative standard deviations varying in the range of 3–21.2% (intraday) and 0.3–15.2% (interday). The results indicate that the proposed method is a good candidate for pyrethroid residues in apple samples.  相似文献   

7.
A novel adsorbent made of polydopamine‐functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core–shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples.  相似文献   

8.
An arginine‐modified reduced graphene oxide composite was prepared in an on‐line solid‐phase extraction disk and coupled to high‐performance liquid chromatography for the re‐enrichment of heterocyclic aromatic amines. The synthetic composite presented an excellent adsorption capability because of the ultrahigh active surface area of graphene and the abundant alkaline groups of arginine. The adsorption capacity of it was 52.7 mg 2‐amino‐3‐methyl‐imidazo[4,5‐f]‐quinoline per gram, nearly twice that of threonine‐modified reduced graphene oxide composite, glutamic acid modified reduced graphene oxide composite, and reduced graphene oxide. This on‐line method was successfully applied to the detection of a series of heterocyclic aromatic amines in beef jerky. After clean‐up and re‐enrichment of the on‐line solid‐phase extraction disk, the chromatographic background of the sample was low and the shape of chromatographic peaks was sharp. The method detection limit was in the range of 0.30–0.49 ng/g, and the recovery was in the range of 82.0–111.5%.  相似文献   

9.
A novel strategy to synthesize a functional mesoporous material for efficient removal of cesium is reported. Specifically, Prussian blue derivate‐modified SBA‐15 (SBA‐15@FC) was prepared by photoinitiated thiol–ene reaction between thiol‐modified SBA‐15 and pentacyano(4‐vinyl pyridine)ferrate complex. The effects of weight percentage of the Prussian blue derivate, pH, adsorbent dose, co‐existing ions, and initial concentration were evaluated on the adsorption of cesium ions. The adsorption kinetically follows a pseudo‐second‐order model and reaches equilibrium within 2 h with a high adsorption capacity of about 13.90 mg Cs g?1, which indicates that SBA‐15@FC is a promising adsorbent to effectively remove cesium from aqueous solutions.  相似文献   

10.
This paper describes the use of graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane as a solid‐phase extraction sorbent for the determination of organic acids. The resultant graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane was characterized by FTIR spectroscopy and adsorption experiments. Solid‐phase extraction parameters such as sorbent type, sample solution pH, sample loading rate, eluent salt concentration, eluent methanol concentration, elution rate, sample loading, and elution volume were optimized. The method showed good precision, accuracy, sensitivity, and linear response for organic acids analysis over a concentration range of 1–100 μg/L for benzoic acid, p‐methoxybenzoic acid, and salicylic acid and 5–100 μg/L for the remaining organic acids (cinnamic acid, p‐chlorobenzoic acid, and p‐bromobenzoic acid) with coefficients of determination (r2) of higher than 0.9957. Limits of detection from 0.50 to 1.0 μg/L for six organic acids were achieved. The developed method was successfully applied to determine organic acids in real samples.  相似文献   

11.
A novel poly(aniline‐coo‐aminophenol) (PAOA)/mesoporous silica SBA‐15 nanocomposite was synthesized and investigated for adsorption of Hg (II) from aqueous solutions of wide pH range. A chemical oxidation method was employed for polymerization of aniline and o‐aminophenol on an ordered SBA‐15 template to obtain a significantly enlarged BET surface area of the adsorbent. Efficiency study revealed that the PAOA/SBA‐15 could reach a maximum Hg (II) adsorption capacity of over 400 mg/g. Kinetic study showed that the Hg (II) adsorption by the PAOA/SBA‐15 fitted a pseudo‐second‐order kinetic model, indicating that the mercury adsorption process was predominantly controlled by chemical process. The results of this study also proved that the adsorbed Hg (II) could be effectively desorbed from the PAOA/SBA‐15 in 0.1M HCl and 5% sulfocarbonide solutions. Associated adsorption mechanism was also investigated by means of Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A new three‐dimensional graphene oxide‐wrapped melamine foam was prepared and used as a solid‐phase extraction substrate. β‐Cyclodextrin was fabricated onto the surface of three‐dimensional graphene oxide‐wrapped melamine foam by a chemical covalent interaction. In view of a specific surface area and a large delocalized π electron system of graphene oxide, in combination with a hydrophobic interior cavity and a hydrophilic peripheral face of β‐cyclodextrin, the prepared extraction material was proposed for the determination of flavonoids. In order to demonstrate the extraction properties of the as‐prepared material, the adsorption energies were theoretically calculated based on periodic density functional theory. Static‐state and dynamic‐state binding experiments were also investigated, which revealed the monolayer coverage of flavonoids onto the β‐cyclodextrin/graphene oxide‐wrapped melamine foams through the chemical adsorption. 1H NMR spectroscopy indicated the formation of flavonoids–β‐cyclodextrin inclusion complexes. Under the optimum conditions, the proposed method exhibited acceptable linear ranges (2–200 μg/L for rutin and quercetin‐3‐O‐rhamnoside; 5–200 μg/L for quercetin) with correlation coefficients ranging from 0.9979 to 0.9994. The batch‐to‐batch reproducibility (= 5) was 3.5–6.8%. Finally, the as‐established method was satisfactorily applied for the determination of flavonoids in Lycium barbarum (Goji) samples with relative recoveries in the range of 77.9–102.6%.  相似文献   

13.
A simple, effective, and robust magnetic solid‐phase extraction method was developed using magnetite/reduced graphene oxide nanoparticles as the adsorbent for the simultaneous determination of Sudan dyes (I, II, III, and IV) in foodstuffs. The magnetite/reduced graphene oxide nanoparticles were characterized by X‐ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. The extraction parameters including extraction time, elution solution, and elution time and volume were investigated in detail. Such magnetite/reduced graphene oxide nanoparticles based magnetic solid‐phase extraction in combination with high‐performance liquid chromatography and variable wavelength detection gave the detection limits of 3–6 μg/kg for Sudan I–IV in chili sauce, tomato sauce, chili powder, and chili flake samples. The recoveries were 79.6–108% at three spiked levels with the intra‐ and inter‐day relative standard deviations of 1.2–8.6 and 4.5–9.6%, respectively. The feasibility was further performed by a comparison with commercial alumina‐N. This method is suitable for the routine analysis of Sudan dyes due to its sensitivity, simplicity, and low cost.  相似文献   

14.
《化学:亚洲杂志》2017,12(12):1314-1325
Bifunctional SBA‐1 mesoporous silica nanoparticles (MSNs) with carboxylic acid and amino groups (denoted as CNS‐10‐10) have been successfully synthesized, characterized, and employed as adsorbents for dye removal. Adsorbent CNS‐10‐10 shows high affinity towards cationic and anionic dyes in a wide pH range, and exhibits selective dye removal of a two‐dye mixture system of cationic methylene blue and anionic eosin Y. By changing the pH of the medium, the selectivity of the adsorption behavior can be easily modulated. For comparison purposes, the counterparts, that is, pure silica SBA‐1 MSNs (CS‐0) and those with either carboxylic acid or amino functional groups (denoted as CS‐10 and NS‐10, respectively) were also prepared to evaluate their dye‐adsorption behaviors. As revealed by the zeta‐potential measurements, the electrostatic interaction between the adsorbent surface and the dye molecule plays an important role in the adsorption mechanism. Adsorbent CNS‐10‐10 can be easily regenerated and reused, and maintains its adsorption efficiency up to 80 % after four cycles.  相似文献   

15.
The simultaneous determination of amphetamine and methadone was carried out by magnetic graphene oxide nanoparticles, a magnetic solid‐phase extraction adsorbent, as a new sample treatment technique. The main factors (the amounts of sample volume, amount of adsorbent, type and amount of extraction organic solvent, time of extraction and desorption, pH, the ionic strength of extraction medium, and agitation rate) influencing the extraction efficiency were investigated and optimized. Under the optimized conditions, good linearity was observed in the range of 100–1500 ng/mL for amphetamine and 100–1000 ng/mL for methadone. The method was evaluated for determination of AM and methadone in positive urine samples, satisfactory results were obtained, therefore magnetic solid‐phase extraction can be applied as a novel method for the determination of drugs of abuse in forensic laboratories.  相似文献   

16.
Hyperbranched polytriazine functionalized with humic acid was prepared and developed as new sorbents for dispersive solid‐phase extraction of three acaricides (clofentezine, fenpyroximate, and pyridaben) in tea samples combined with high‐performance liquid chromatography detection. The sorbents were characterized by scanning electron microscopy, energy dispersive spectroscopy, Zeta‐potential, and Fourier transform infrared spectroscopy. The extraction parameters (extraction time, ionic strength, desorption conditions) were optimized. The adsorption mechanism was evaluated utilizing Fourier transform infrared spectra. Under optimum conditions, satisfactory analytical performances were achieved, which included high precision (1.33–9.62%), low limits of detection (0.19–3.54 µg/L), and wide linear range (2.5–500 µg/L) for the analysis of the acaricides. Moreover, the proposed method proved highly effective for the determination of acaricides in tea samples, with the relative recoveries in the range of 65.20–108.13% and relative standard deviations < 9.87%. The method has great application potential for the detection of acaricides in tea samples.  相似文献   

17.
Ellagic acid, a natural polyphenol, was isolated from pomegranate peel extract by hydrophobic interaction using graphene oxide grafted cotton fiber as a stationary adsorbent. The grafted graphene oxide moieties served as hydrophobic interaction‐binding sites for ellagic acid adsorption. The graphene oxide grafted cotton fiber was made into a membrane‐like sheet in order to complete ellagic acid purification by using a binding–elution mode. The effects of operational parameters, such as the composition of the binding buffer/elution buffer, buffer pH, and buffer concentration, on the isolation process were investigated. It was found that 5 mmol/L sodium carbonate aqueous solution is a proper‐binding buffer, and sodium hydroxide aqueous solution ranging from 0.04 to 0.06 mol/L is a suitable elution solution for ellagic acid purification. Under the optimized condition, the purity of ellagic acid increased significantly from 7.5% in the crude extract to 75.0–80.0%. The pH value was found to be a key parameter that determines the adsorption and desorption of ellagic acid. No organic solvent is involved in the entire purification process. Thus, a simple and environmentally friendly method is established for ellagic acid purification using a graphene oxide‐modified biodegradable and bio‐sourced fibrous adsorbent.  相似文献   

18.
A novel mixed‐mode adsorbent was prepared by functionalizing silica with tris(2‐aminoethyl)amine and 3‐phenoxybenzaldehyde as the main mixed‐mode scaffold due to the presence of the plentiful amino groups and benzene rings in their molecules. The adsorption mechanism was probed with acidic, natural and basic compounds, and the mixed hydrophobic and ion‐exchange interactions were found to be responsible for the adsorption of analytes. The suitability of dispersive solid‐phase extraction was demonstrated in the determination of chlorophenols in environmental water. Several parameters, including sample pH, desorption solvent, ionic strength, adsorbent dose, and extraction time were optimized. Under the optimal extraction conditions, the proposed dispersive solid‐phase extraction coupled with high‐performance liquid chromatography showed good linearity range and acceptable limits of detection (0.22∽0.54 ng/mL) for five chlorophenols. Notably, the higher extraction recoveries (88.7∽109.7%) for five chlorophenols were obtained with smaller adsorbent dose (10 mg) and shorter extraction time (15 min) compared with the reported methods. The proposed method might be potentially applied in the determination of trace chlorophenols in real water samples.  相似文献   

19.
Sodium dodecyl sulfate coated amino‐functionalized magnetic iron oxide nanoparticles were used as an efficient adsorbent for rapid removal and preconcentration of three important organophosphorus pesticides, chlorpyrifos, diazinon and phosalone, by ultrasound‐assisted dispersive magnetic solid‐phase microextraction. Fabrication of amino‐functionalized magnetic nanoparticles was certified by characteristic analyses, including Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. Affecting parameters on the removal efficiency were investigated and optimized through half‐fractional factorial design and Doehlert design, respectively. The analysis of analytes was performed by high‐performance liquid chromatography with ultraviolet detection. Under the optimum conditions, extraction recoveries for 20 ng/mL of organophosphorus pesticides were in the range of 84–97% with preconcentration factors in the range of 134–155. Replicating the experiment in above condition for five times gave the relative standard deviations <6%. The calibration curves showed high linearity in the range of 0.2–700 ng/mL and the limits of detection were in the range of 0.08–0.13 ng/mL. The proposed method was successfully applied for both removal and trace determination of these three organophosphorus pesticides in environmental water and fruit juice samples.  相似文献   

20.
Herein, we introduce a new polypeptide‐functionalized mesoporous silica template fabricated from a biodegradable poly(ethylene oxide‐b‐?‐caprolactone) (PEO‐b‐PCL) diblock copolymer and a poly(tyrosine) (PTyr) biopolymer. The crystallization behavior of the PEO‐b‐PCL diblock copolymer changes after blending, but the secondary structure of PTry remains stable. After selective solvent extraction in THF, the PEO‐b‐PCL is removed, but PTyr remains within the silica matrix due to its different solubility. Fourier‐transform IR spectroscopic analysis (FTIR), thermal gravitometry analysis (TGA), small‐angle X‐ray scattering (SAXS), and X‐ray diffraction (XRD) studies confirm the retention of PTyr to form a polypeptide‐functionalized mesoporous material. The adsorption of methylene blue hydrate (MB) from aqueous solution into the polypeptide‐functionalized mesoporous silica is investigated, thus revealing that the nanocomposite exhibits a high adsorption capacity relative to pure silica due to hydrogen‐bonding interactions between the hydroxy phenolic group of PTyr and the N‐containing aromatic ring from MB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号