首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical calculations were performed to elucidate the ability of the recently reported bis‐tert‐alcohol‐functionalized crown‐6‐calix[4]arene (BACCA) molecule to promote nucleophilic fluorination of alkyl mesylates with cesium fluoride reagent. It was found that a similar structure, named BACCAt, can separate the cesium fluoride ion pair in tert‐butanol solution. This separation has a free energy cost, even considering the double hydrogen bonds with the fluoride ion. The solvent has an important effect on the stabilization of this complex, due to interaction with the high dipole moment of the separated ion pair. The observed rate acceleration effect involves a structure with double hydrogen bonds between the BACCAt and the centers of negative charges of the SN2 transition state. The predicted free energy barrier of 27.3 kcal mol−1 is in excellent agreement with the estimated experimental value of 26.2 kcal mol−1.  相似文献   

2.
An ion‐pair reversed‐phase high‐performance liquid chromatographic method, using tetrabutylammonium bromide (TBAB) as ion‐pair reagent, has been developed for the analysis of cyanuric acid (CA) in milk powder and swimming pool water. It was found that the effect of the concentrations of ion‐pair reagent on the retention of cyanuric acid was different for standard solution and different real samples. The separation was carried out on a reversed‐phase C18 column with 85:15 (V/V) water‐acetonitrile (ACN) containing different concentration of TBAB as mobile phase for different samples. The linear range of the calibration curve for CA was 0.1–100 mg·L?1. The detection limits calculated at S/N=3 was 0.11 mg·L?1 for the analysis of milk powder and 0.31 mg·L?1 for the analysis of swimming pool water, respectively. The method was successfully applied to the analysis of CA in milk powder and swimming pool water.  相似文献   

3.
A MS‐based methodology has been developed for analysis of core‐fucosylated versus antennary‐fucosylated glycosites in glycoproteins. This procedure is applied to the glycoprotein alpha‐1‐antitrypsin (A1AT), which contains both core‐ and antennary‐fucosylated glycosites. The workflow involves digestion of intact glycoproteins into glycopeptides, followed by double digestion with sialidase and galactosidase. The resulting glycopeptides with truncated glycans were separated using an off‐line HILIC (hydrophilic interaction liquid chromatography) separation where multiple fractions were collected at various time intervals. The glycopeptides in each fraction were treated with PNGase F and then divided into halves. One half of the sample was applied for peptide identification while the other half was processed for glycan analysis by derivatizing with a meladrazine reagent followed by MS analysis. This procedure provided site‐specific identification of glycosylation sites and the ability to distinguish core fucosylation and antennary fucosylation via a double digestion and a mass profile scan. Both core and antennary fucosylation are shown to be present on various glycosites in A1AT.  相似文献   

4.
A simple and fast flow method for the trace level determination of p‐toluidine, 2‐methyl‐5‐nitroaniline, and 2,4‐dinitroaniline in aqueous samples is reported. These amino/nitroaromatics are related to trinitrotoluene (TNT) and appear during the degradation process of the explosive. The chemical principles of ion‐pair formation and liquid‐liquid extraction are applied: In aqueous acidic medium, the protonated analyte [HA]+ makes an ion‐pair with the tetrachloroaurate(III) ion, followed by on‐line ion‐pair extraction into the dichloromethane carrier used. After membrane separation, the CH2Cl2 containing the ion‐pair, [HA]+[AuCl4], is mixed with the reversed micellar luminescent reagent of luminol (in 0.3 M Na2CO3) prepared from cetyl‐trimethylammonium chloride in CH2Cl2‐cyclohexane and the [AuCl4‐luminol chemiluminescence (CL) output is recorded. The detection limits (S/N> 3) are: p‐toluidine, 1.0 × 10−4M; 2‐methyl‐5‐nitroaniline, 1.0 × 10−7 M; 2,4‐dinitroaniline, 1.0 × 10−7 M, while the calibration curves are linear between 1.0 × 10−4 — 1.0 × 10−2 M for all the compounds. Although spectral studies indicated the formation and extraction of a very small amount of the ion‐pair species, the reversed micellar‐mediated CL detection system provides an alternative procedure for the determination of degradation products of the explosive TNT in environmental aqueous samples.  相似文献   

5.
A method of reversed‐phase ion‐pair solid‐phase extraction combined with ion chromatography for determination of pyrrolidinium ionic liquid cations (N‐methyl‐N‐ethyl pyrrolidinium, N‐methyl‐N‐propyl pyrrolidinium, and N‐methyl‐N‐butyl pyrrolidinium) in water samples was developed in this study. First, ion‐pair reagent sodium heptanesulfonate was added to the water samples after static, centrifugation and filteration. Then, pyrrolidinium cations in the samples were enriched and purified by a reversed‐phase solid‐phase extraction column, and eluted from the column with methanol aqueous solution as eluent. Finally, the eluate collected was analyzed by ion chromatography. The separation and direct conductivity detection of these pyrrolidinium cations by ion‐exchange column using 1.0 mM methanesulfonic acid (in water)/acetonitrile (97:3, v:v) as mobile phase was achieved within 10 min. By using this method, pyrrolidinium cations in Songhua River and Hulan River were successfully extracted with the recoveries ranging from 74.2 to 97.1% and the enrichment factor assessed as 60. Pyrrolidinium cations with the concentration of 0.001?0.03 mg/L can be enriched and detected in the water samples. The developed method for the determination of pyrrolidinium ionic liquid cations in water samples is simple and reliable, which provides a reference for the study of the potential impact of ionic liquids on the environment.  相似文献   

6.
A novel l‐ phenylalanine molecularly imprinted solid‐phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion‐pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid‐phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l‐ phenylalanine. Under the optimized conditions of the procedure, an analytical method for l‐ phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse‐phase silica gel, the obtained molecularly imprinted polymer as an solid‐phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L?1) for the isolation of l‐ phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion‐pair dummy template imprinting is effective for preparing selective solid‐phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples.  相似文献   

7.
A novel, simple, and effective ion‐pair cloud‐point extraction coupled with a gradient high‐performance liquid chromatography method was developed for determination of thiamine (vitamin B1), niacinamide (vitamin B3), pyridoxine (vitamin B6), and riboflavin (vitamin B2) in plasma and urine samples. The extraction and separation of vitamins were achieved based on an ion‐pair formation approach between these ionizable analytes and 1‐heptanesulfonic acid sodium salt as an ion‐pairing agent. Influential variables on the ion‐pair cloud‐point extraction efficiency, such as the ion‐pairing agent concentration, ionic strength, pH, volume of Triton X‐100, extraction temperature, and incubation time have been fully evaluated and optimized. Water‐soluble vitamins were successfully extracted by 1‐heptanesulfonic acid sodium salt (0.2% w/v) as ion‐pairing agent with Triton X‐100 (4% w/v) as surfactant phase at 50°C for 10 min. The calibration curves showed good linearity (r2 > 0.9916) and precision in the concentration ranges of 1‐50 μg/mL for thiamine and niacinamide, 5–100 μg/mL for pyridoxine, and 0.5–20 μg/mL for riboflavin. The recoveries were in the range of 78.0–88.0% with relative standard deviations ranging from 6.2 to 8.2%.  相似文献   

8.
A new, simple, rapid, sensitive, efficient and low‐cost spectrophotometric procedure for the determination of gold was developed. The method is based on the reaction of [AuCl4]? with 2‐[2‐(4‐dimethylaminophenyl)‐vinyl]‐1,3,3‐trimethyl‐3H‐indolium reagent to form a colored ion associate extractable by various organic solvents. The molar absorptivity of the ion associates is in the range (5.7–9.2) × 104 L mol?1 cm?1 depending on the extractant. Butyl acetate was chosen as the extractant. The optimum reaction conditions were established: pH 2–4, concentration of the dye reagent (0.8–1.5) × 10?4 mol L?1. The determination of gold is not hindered even by a 1000‐fold concentration of Ni and Co; a 500‐fold concentration of Pb and Zn; a 100‐fold concentration of Bi, Cu, Cd, Pt, Rh and Ru; or a 20‐fold concentration of Ag. The established method was applied to the determination of gold in model samples and enriched polymetallic ores.  相似文献   

9.
A new method for glyphosate residue determination in apple has been developed. A SPE cartridge was used to clean up the samples before derivatization. Glyphosate was derivatized with 4‐chloro‐3,5‐dinitrobenzotrifluoride (CNBF) and quantified by reverse ion‐pair liquid chromatography using cetyltrimethylammonium bromide (CTAB) as ion‐pair reagent. In pH 9.5 H3BO3–Na2B4O7 medium, the reaction of glyphosate with CNBF was complete after 30 min at 60°C. The stability of the derivative on exposure to light at room temperature in methanol–water was demonstrated. The labeled glyphosate was separated on a Kromasil C18 column (250×4.6 mm, 5 μm) at room temperature and UV detection was applied at 360 nm. Separation was achieved within 15 min in gradient elution mode. The correlation coefficient for the method was 0.9998 at concentrations ranging from 0.1 to 50 μg/g. The calculated recoveries for glyphosate in apple were from 86.00 to 99.55%, and the relative standard deviations (n = 6) were from 1.43 to 6.32. The limit of detection was 0.01 μg/g for glyphosate in apple.  相似文献   

10.
Chemical warfare agents such as organophosphorus nerve agents, mustard agents, and psychotomimetic agent like 3‐quinuclidinylbenzilate degrade in the environment and form acidic degradation products, the analysis of which is difficult under normal analytical conditions. In the present work, a simultaneous extraction and derivatization method in which the analytes are butylated followed by gas chromatography and mass spectrometric identification of the analytes from aqueous and soil samples was carried out. The extraction was carried out using ion‐pair solid‐phase extraction with tetrabutylammonium hydroxide followed by gas chromatography with mass spectrometry in the electron ionization mode. Various parameters such as optimum concentration of the ion‐pair reagent, pH of the sample, extraction solvent, and type of ion‐pair reagent were optimized. The method was validated for various parameters such as linearity, accuracy, precision, and limit of detection and quantification. The method was observed to be linear from 1 to 1000 ng/mL range in selected ion monitoring mode. The extraction recoveries were in the range of 85–110% from the matrixes with the limit of quantification for alkyl phosphonic acids at 1 ng/mL, thiodiglycolic acid at 20 ng/mL, and benzilic acid at 50 ng/mL with intra‐ and interday precisions below 15%. The developed method was applied for the samples prepared in the scenario of challenging inspection.  相似文献   

11.
A simple and practical derivatization procedure for increasing the detectability and enantiomeric separation of chiral carboxylic acids in LC/ESI‐MS/MS has been developed. (S)‐Anabasine (ANA) was used as the derivatization reagent and rapidly reacted with carboxylic acids [3‐hydroxypalmitic acid (3‐OH‐PA), 2‐(β‐carboxyethyl)‐6‐hydroxy‐2,7,8‐trimethylchroman (γ‐CEHC), and etodolac] in the presence of 4‐(4,6‐dimethoxy‐1,3,5‐triazin‐2‐yl)‐4‐methylmorpholium chloride. The resulting ANA‐derivatives were highly responsive in ESI‐MS operating in the positive‐ion mode and gave characteristic product ions during MS/MS, which enabled sensitive detection using selected reaction monitoring; the detection responses of the ANA‐derivatives were increased by 20–160‐fold over those of the intact carboxylic acids and the limits of detection were in the low femtomole range (1.8–11 fmol on the column). The ANA‐derivatization was also effective for the enatiomeric separation of the chiral carboxylic acids; the resolution was 1.92, 1.75, and 2.03 for 3‐OH‐PA, γ‐CHEC, and etodolac, respectively. The derivatization procedure was successfully applied to a biological sample analysis; the derivatization followed by LC/ESI‐MS/MS enabled the separation and detection of trace amounts of 3‐OH‐PA in neonatal dried blood spot and γ‐CEHC in human saliva with a simple pretreatment and small sample volume.  相似文献   

12.
Synthesis of 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane and 1,3,5‐trinitro‐1,3,5‐triazacyclohexane by the Bachmann process leads to a mixture of both. The separation of 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane and 1,3,5‐trinitro‐1,3,5‐triazacyclohexane from their mixture is difficult because the sizes and physical properties of these homologous compounds are similar. For this purpose, seven molecularly imprinted polymers have been synthesized for each explosive, and a selective solid‐phase extraction procedure has been developed. A molecularly imprinted polymer, synthesized with 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane as the template, methacrylic acid as the monomer and trimethylolpropane trimethacrylate as the cross‐linking agent in a molar ratio of 1:8:8 showed the best separation capability. A packed cartridge containing this polymer can be reused for 23 solid‐phase extraction cycles without repacking, and the total separation capability toward 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane reached 6.81 mg per gram of polymer. 1,3,5‐Trinitro‐1,3,5‐triazacyclohexane was not detected in the separated 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane by high‐performance liquid chromatography and vice versa. This newly developed method had the advantages of high recovery (100%) and purity, environmental friendliness, and room temperature operability. This study showed that some molecularly imprinted polymers that cannot absorb target analytes well in the solvent in which the polymers were polymerized might have high‐binding capacity for the analytes and show imprinting effects in other solvents.  相似文献   

13.
Human acetyl‐coenzyme A carboxylase 2 catalyzes the carboxylation of acetyl coenzyme A to form malonyl coenzyme A, along with the conversion of magnesium‐adenosine triphosphate complex to magnesium‐adenosine diphosphate complex. A simple off‐column capillary electrophoresis assay for human acetyl‐coenzyme A carboxylase 2 was developed based on the separation of magnesium‐adenosine triphosphate complex, magnesium‐adenosine diphosphate complex, acetyl coenzyme A and malonyl coenzyme A with detection by ultraviolet absorption at 256 nm. When Mg2+ was absent from the separation buffer, the zones due to magnesium‐adenosine triphosphate complex and magnesium‐adenosine diphosphate complex both split and migrated as two separate peaks. With Mg2+ added to the separation buffer, magnesium‐adenosine triphosphate complex and magnesium‐adenosine diphosphate complex produced single peaks, and the reproducibility of peak shape and area improved for human acetyl‐coenzyme A carboxylase 2 assay components. The final separation buffer used was 30.0 mM HEPES, 3.0 mM MgCl2, 2.5 mM KHCO3, and 2.5 mM potassium citrate at pH 7.50. The same buffer was used for the enzyme‐catalyzed reaction (off‐column). Inhibition of human acetyl‐coenzyme A carboxylase 2 by CP‐640186, a known inhibitor, was detected using the capillary electrophoresis assay.  相似文献   

14.
A sensitive and effective micellar electrokinetic capillary chromatography with laser‐induced fluorescence detection approach was described for the determination of low molecular‐mass thiols using 1,3,5,7‐tetramethyl‐8‐phenyl‐(4‐iodoacetamido) difluoroboradiaza‐s‐indacene as the labeling reagent. After precolumn derivatization, baseline separation of six thiol compounds including cysteine, glutathione, N‐acetylcysteine, homocysteine, 6‐mercaptopurine, and penicillamine were achieved within 18 min. The optimal running buffer was composed of mixtures involving 25 mM sodium dodecyl sulfate, 25% (v/v) acetonitrile and 15 mM sodium phosphate buffer, pH 7.5. The detection limits (S/N = 3) were found as low as 40 pM under argon ion laser‐induced fluorescence detector (λex/λem = 488/520 nm), which were much better than the reported approaches. The accuracy and specificity of this assay for real samples were assured by a standard addition method. The proposed method has been applied to the analysis of thiols both in human plasma and plum flower samples with recoveries of 92.0–109.4%.  相似文献   

15.
The study on nucleic acid retention in ion‐pair reversed‐phase high‐performance liquid chromatography mainly focuses on size‐dependence, however, other factors influencing retention behaviors have not been comprehensively clarified up to date. In this present work, the retention behaviors of oligonucleotides and double‐stranded DNAs were investigated on silica‐based C18 stationary phase by ion‐pair reversed‐phase high‐performance liquid chromatography. It is found that the retention of oligonucleotides was influenced by base composition and base sequence as well as size, and oligonucleotides prone to self‐dimerization have weaker retention than those not prone to self‐dimerization but with the same base composition. However, homo‐oligonucleotides are suitable for the size‐dependent separation as a special case of oligonucleotides. For double‐stranded DNAs, the retention is also influenced by base composition and base sequence, as well as size. This may be attributed to the interaction of exposed bases in major or minor grooves with the hydrophobic alky chains of stationary phase. In addition, no specific influence of guanine and cytosine content was confirmed on retention of double‐stranded DNAs. Notably, the space effect resulted from the stereostructure of nucleic acids also influences the retention behavior in ion‐pair reversed‐phase high‐performance liquid chromatography.  相似文献   

16.
Separation and determination of some common metal ions was achieved with methyl 3‐amino‐3‐(pyridin‐3‐yl)propanoate dihydrochloride (MAPP) as an ion‐pairing reagent and pyridine as a detectable counter‐ion for indirect UV detection at 254 nm. The effects of the complexing reagent and chromophore concentrations, applied voltage, and organic solvent content on the separation were investigated. The optimized separation was carried out in a running electrolyte containing 16 mM MAPP and 20 mM pyridine at pH 4.0 and was successfully applied to the qualitative and quantitative analysis of Li+, Na+, Mg2+, Ca2+, Ba2+, Ni2+, and Zn2+ in pharmaceutical vitamin preparations and various water samples.  相似文献   

17.
Quantitative determination of amphetamine in plasma by the use of a novel electrophoric derivatization reagent, o‐(pentafluorobenzyloxycarbonyl)‐2,3,4,5‐tetrafluorobenzoyl chloride is described. Amphetamine can be quantitatively measured down to 49 pg/mL plasma using only 250 μL of sample due to the extraordinary sensitivity of the derivatives under negative ion chemical ionization MS. Plasma samples were made alkaline with carbonate buffer and treated with n‐hexane and reagent solution for 20 min, which, after concentration was measured by negative ion chemical ionization GC‐MS. The method is rapid as extraction and derivatization occur in one single step. [2H5]‐Amphetamine was used as an internal standard. Validation data are given to demonstrate the usefulness of the assay, including specificity, linearity, accuracy and precision, benchtop stability, freeze–thaw stability, autosampler stability, aliquot analysis, and prospective analytical batch size accuracy.  相似文献   

18.
Altered levels of thiols in biological fluids are considered to be an important indicator for several diseases. In this article, 1,3,5,7‐tetramethyl‐8‐bromomethyl‐difluoroboradiaza‐s‐indacene is proposed as a fluorescent derivatization reagent for the determination of thiols including glutathione, cysteine, N‐acetylcysteine, and homocysteine by HPLC. Under the optimized derivatization and separation conditions, a baseline separation of all the four derivatives has been achieved using isocratic elution on an RP C8 column within 26 min. With fluorescence detection at 505 and 525 nm for the excitation and emission, respectively, the LODs (S/N = 3) are from 0.2 nM (glutathione) to 0.8 nM (cysteine). The feasibility of this method in real samples has been evaluated by the determination of thiols in human plasma from the healthy persons and hypertensive patients with recoveries of 92–105.3%.  相似文献   

19.
Herein, we report a new CE method to measure adenine nucleotides adenosine 5′‐triphosphate, adenosine 5′‐diphosphate, and adenosine 5′‐monophosphate in red blood cells. For this purpose, 20 mmol/L sodium acetate buffer at pH 3.80 was used as running electrolyte, and the separation was performed by the simultaneous application of a CE voltage of 25 kV and an overimposed pressure of 0.2 psi from inlet to outlet. A rapid separation of these analytes in less than 1.5 min was obtained with a good reproducibility for intra‐ and inter‐assay (CV<4 and 8%, respectively) and an excellent analytical recovery (from 98.3 to 99%). The applicability of our method was proved by measuring adenine nucleotides in red blood cells.  相似文献   

20.
Streptomycin (SM) is composed of streptidine, streptose and N‐methyl glucosamine sugar moieties. For the determination of SM and its related substances, an ion‐pair LC‐UV detection method using a Supelcosil LC‐ABZ column was developed previously. While analyzing commercial samples, several unknown compounds were detected. Most of these compounds are not yet characterized. In this study, the above LC method was coupled to MS for impurity profiling in a selected commercial sample. However, it could not be directly coupled to MS due to the presence of the nonvolatile salt, buffer and ion‐pair reagent in the mobile phase. So, for structural characterization, each peak eluted from the nonvolatile eluent system was collected and transferred to MS after the desalting process. In total, 16 compounds were studied, 15 compounds including 12 unknowns could be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号