首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel, simple, and rapid vortex‐assisted hollow‐fiber liquid‐phase microextraction method was developed for the simultaneous extraction of albendazole and triclabendazole from various matrices before their determination by high‐performance liquid chromatography with fluorescence detection. Several factors influencing the microextraction efficiency including sample pH, nature and volume of extraction solvent, ionic strength, vortex time, and sample volume were investigated and optimized. Under the optimal conditions, the limits of detection were 0.08 and 0.12 μg/L for albendazole and triclabendazole, respectively. The calibration curves were linear in the concentration ranges of 0.3–50.0 and 0.4–50.0 μg/L with the coefficients of determination of 0.9999 and 0.9995 for albendazole and triclabendazole, respectively. The interday and intraday relative standard deviations for albendazole and triclabendazole at three concentration levels (1.0, 10.0, and 30.0 μg/L) were in the range of 6.0–11.0 and 5.0–7.9%, respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, milk, honey, and urine samples.  相似文献   

2.
A new and fast sample preparation technique based on three‐phase hollow fiber liquid‐phase microextraction with a magnetofluid was developed and successfully used to quantify the aristolochic acid I (AA‐I) and AA‐II in plasma after oral administration of Caulis akebiae extract. Analysis was accomplished by reversed‐phase high‐performance liquid chromatography with fluorescence detection. Parameters that affect the hollow fiber liquid‐phase microextraction processes, such as the solvent type, pH of donor and acceptor phases, content of magnetofluid, salt content, stirring speed, hollow fiber length, extraction temperature, and extraction time, were investigated and optimized. Under the optimized conditions, the preconcentration factors for AA‐I and AA‐II were >627. The calibration curve for two AAs was linear in the range of 0.1–10 ng/mL with the correlation coefficients >0.9997. The intraday and interday precision was <5.71% and the LODs were 11 pg/mL for AA‐I and 13 pg/mL for AA‐II (S/N = 3). The separation and determination of the two AAs in plasma after oral administration of C. akebiae extract were completed by the validated method.  相似文献   

3.
SPE combined with dispersive liquid–liquid microextration was used for the extraction of ultra‐trace amounts of benzodiazepines (BZPs) including, diazepam, midazolam, and alprazolam, from ultra‐pure water, tap water, fruit juices, and urine samples. The analytes were adsorbed from large volume samples (60 mL) onto octadecyl silica SPE columns. After the elution of the desired compounds from sorbents with 2.0 mL acetone, 0.5 mL of eluent containing 40.0 μL chloroform was injected rapidly into 4.5 mL pure water. After extraction and centrifugation, 2 μL of the sedimented phase was injected into a GC equipped with a flame ionization detector. Several parameters affecting this process were investigated and optimized. Under the optimal conditions, LODs ranged from 0.02 to 0.05 μg/L, a linear dynamic range of 0.1–100 μg/L and relative SDs in the range of 4.4–10.7% were attained. Very high preconcentration factors ranging from 3895–7222 were achieved. The applicability of the method for the extraction of BZPs from different types of complicated matrices, such as tap water, fruit juices, and urine samples, was studied. The obtained results reveal that the proposed method is a good technique for the extraction and determination of BZPs in complex matrices.  相似文献   

4.
The applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of three antidepressant drugs (amitriptyline, imipramine and sertraline) prior to their determination by HPLC-UV. The target drugs were extracted from 11.0 mL of aqueous solution with pH 12.0 (source phase) into an organic extracting solvent (n-dodecane) impregnated in the pores of a hollow fiber and finally back extracted into 24 μL of aqueous solution located inside the lumen of the hollow fiber and adjusted to pH 2.1 using 0.1 M of H3PO4 (receiving phase). The extraction was performed due to pH gradient between the inside and outside of the hollow fiber membrane. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME including pH of the source and receiving phases, the type of organic phase, ionic strength and volume of the source phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factors up to 300 were achieved and the relative standard deviation (R.S.D.%) of the method was in the range of 2-12%. The calibration curves were obtained in the range of 5-500 μg L−1 with reasonable linearity (R2 > 0.998) and the limits of detection (LODs) ranged between 0.5 and 0.7 μg L−1 (based on S/N = 3). Finally, the applicability of the proposed method was evaluated by extraction and determination of the drugs in urine, plasma and tap water samples. The results indicated that hollow fiber microextraction method has excellent clean-up and high-preconcentration factor and can be served as a simple and sensitive method for monitoring of antidepressant drugs in the biological samples.  相似文献   

5.
Dispersive liquid–liquid microextraction in combination with an in situ derivatization is suggested for methyltin compound sampling and preconcentration from water solutions. The derivatization was carried out with sodium tetraethylborate at pH 3. The effects of extraction and disperser solvents type, volume, and extraction time on the extraction efficiency were investigated. 1,2‐Dichlorobenzene was used as an extraction solvent and ethanol was used as a disperser solvent. The calibration graphs for all the analytes were linear up to 2 μg (Sn) L?1, correlation coefficients were 0.998–0.999, LODs were 0.13, 0.05, and 0.06 ng (Sn) L?1 for trimethyltin, DMT, and monomethyltin, respectively. Repeatabilities of the results were acceptable with RSDs up to 12.1%. A possibility to apply the proposed method for methyltin compound determination in water samples was demonstrated.  相似文献   

6.
A simple, sensitive, and rapid microextraction method, namely, ultrasound‐assisted surfactant‐enhanced emulsification microextraction based on the solidification of floating organic droplet method coupled with high‐performance liquid chromatography was developed for the simultaneous preconcentration and determination of nitrazepam and midazolam. The significant parameters affecting the extraction efficiency were considered using Plackett–Burman design as a screening method. To obtain the optimum conditions with consideration of the selected significant variables, a Box–Behnken design was used. The microextraction procedure was performed using 29.1 μL of 1‐undecanol, 1.36% (w/v) of NaCl, 10.0 μL of sodium dodecyl sulfate (25.0 μg mL?1), and 1.0 μL of Tween80 (25.0 μg mL?1) as an emulsifier in an extraction time of 20.0 min at pH 7.88. In order to investigate the validation of the developed method, some validation parameters including the linear dynamic range, repeatability, limit of detection, and recoveries were studied under the optimum conditions. The detection limits of the method were 0.017 and 0.086 ng mL?1 for nitrazepam and midazolam, respectively. The extraction recovery percentages for the drugs studied were above 91.0 with acceptable relative standard deviation. The proposed methodology was successfully applied for the determination of these drugs in a number of human serum samples.  相似文献   

7.
The determination of α‐ketoacid concentration is demanded to evaluate the absorption and metabolic behavior of compound α‐ketoacid tablets taken by chronic kidney disease patients. To eliminate the interference of endogenous substance of urine and enrich the analytes, a three‐phase hollow‐fiber liquid‐phase microextraction combined with ion‐pair high‐performance liquid chromatography method was established for the determination of d ,l ‐α‐hydroxymethionine calcium, d ,l ‐α‐ketoisoleucine calcium, α‐ketovaline calcium, α‐ketoleucine calcium, and α‐ketophenylalanine calcium of compound α‐ketoacid tablets in human urine samples. The extraction parameters, such as organic solvent, pH of donor phase and acceptor phase, stirring rate, and extraction time were optimized. Under the optimal conditions, the obtained enrichment factors were up to 11‐, 110‐, 198‐, 202‐, and 50‐fold, respectively. The calibration curves for these analytes were linear over the range of 0.1–10 mg/L for α‐ketovaline calcium, d ,l ‐α‐ketoisoleucine calcium, and α‐ketoleucine calcium, 0.5–10 mg/L for d ,l ‐α‐hydroxymethionine calcium, and α‐ketophenylalanine calcium with r > 0.99. The relative standard deviations (n = 5) were less than 6.27% and the LODs were 100.7, 10.0, 5.8, 7.8, and 8.6 μg/L (based on S/N = 3), respectively. Good recoveries from spiked urine samples (92–118%) were obtained. The proposed method demonstrated excellent sample clean‐up and analytes enrichment to determine the five components in human urine.  相似文献   

8.
The present study deals with the development of a liquid microextraction procedure for enhancing the sensitivity of the determination of 2‐methyl‐4‐isothiazolin‐3‐one and 5‐chloro‐2‐methyl‐4‐isothiazolin‐3‐one in adhesives. The procedure involves a three‐phase hollow‐fiber liquid‐phase microextraction using a semipermeable polypropylene membrane, which contained 1‐octanol as the organic phase in the pores of the membrane. The donor and acceptor phases are aqueous acidic and alkaline media, respectively, and the final liquid phase (acceptor) is analyzed by HPLC coupled with diode array detection. The most appropriate conditions were extraction time 20 min, stirring speed 1400 rpm, extraction temperature 50°C. The quantification limits of the method were 0.123 and 0.490 μg/g for 2‐methyl‐4‐isothiazolin‐3‐one and 5‐chloro‐2‐methyl‐4‐isothiazolin‐3‐one, respectively. Three different adhesive samples were successfully analyzed. The procedure was compared to direct analysis using ultra high pressure liquid chromatography coupled with TOF‐MS, where the identification of the compounds and the quantification values were confirmed.  相似文献   

9.
A new, efficient, and environmental friendly hollow fiber liquid phase microextraction (HF-LPME) method based on supramolecular solvents was developed for extraction of five benzodiazepine drugs. The supramolecular solvent was produced from coacervation of decanoic acid aqueous vesicles in the presence of tetrabutylammonium (Bu4N+). In this work, benzodiazepines were extracted from aqueous samples into a supramolecular solvent impregnated in the wall pores and also filled inside the porous polypropylene hollow fiber membrane. The driving forces for the extraction were hydrophobic, hydrogen bonding, and π-cation interactions between the analytes and the vesicular aggregates. High-performance liquid chromatography with photodiode array detection (HPLC-DAD) was applied for separation and determination of the drugs. Several parameters affecting the extraction efficiency including pH, hollow fiber length, ionic strength, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, the preconcentration factors were obtained in the range of 112–198. Linearity of the method was determined to be in the range of 1.0–200.0 μg L−1 for diazepam and 2.0–200.0 μg L−1 for other analytes with coefficient of determination (R2) ranging from 0.9954 to 0.9993. The limits of detection for the target benzodiazepines were in the range of 0.5–0.7 μg L−1. The method was successfully applied for extraction and determination of the drugs in water, fruit juice, plasma and urine samples and relative recoveries of the compounds studied were in the range of 90.0–98.8%.  相似文献   

10.
A three‐phase hollow‐fiber liquid‐phase microextraction combined with a capillary LC method using diode array detection was proposed for the determination of six sulfonylurea herbicides, triasulfuron, metsulfuron‐methyl, chlorsulfuron, flazasulfuron, chlorimuron‐ethyl, and primisulfuron‐methyl, in environmental water samples. Different factors that can affect the extraction process such as extraction solvent, acidity of the donor phase, composition and pH of the acceptor phase, salt addition, stirring speed, and extraction time were optimized. Under the optimum conditions, detection and quantitation limits between 0.1 – 1.7 and 0.3 – 5.7 μg/L, respectively, and enrichment factors ranging from 71 to 548 were obtained. The calibration curves were linear within the range of 0.3 – 40 μg/L. Intra‐ and interday RSDs were <6.3 and 8.4%, respectively. The relative recoveries of the spiked ground and river water samples were in the range of 69.4 – 119.2 and 77.4 – 111.7%, respectively. The results of the study revealed that the developed methodology involves an efficient sample pretreatment allowing the preconcentration of analytes, combined with the use of a miniaturized separation technique, suitable for the accurate determination of sulfonylurea herbicides in water.  相似文献   

11.
UV filters, contained in sunscreens and other cosmetic products, as well as in some plastics and industrial products, are nowadays considered contaminants of emerging concern because their widespread and increasing use has lead to their presence in the environment. Furthermore, some UV filters are suspected to have endocrine disruption activity. In the present work, we developed an analytical method based on liquid chromatography with tandem mass spectrometry for the determination of UV filters in tap and lake waters. Sixteen UV filters were extracted from water samples by solid‐phase extraction employing graphitized carbon black as adsorbent material. Handling 200 mL of water sample, satisfactory recoveries were obtained for almost all the analytes. The limits of detection and quantification of the method were comparable to those reported in other works, and ranged between 0.7–3.5 and 1.9–11.8 ng/L, respectively; however in our case the number of investigated compounds was larger. The major encountered problem in method development was to identify the background contamination sources and reduce their contribution. UV filters were not detected in tap water samples, whereas the analyses conducted on samples collected from three different lakes showed that the swimming areas are most subject to UV filter contamination.  相似文献   

12.
A new approach for the development of a dispersive liquid–liquid microextraction followed by GC with flame ionization detection was proposed for the determination of phthalate esters and di‐(2‐ethylhexyl) adipate in aqueous samples. In the proposed method, solid and liquid phases were used as the disperser and extractant, respectively, providing a simple and fast mode for the extraction of the analytes into a small volume of an organic solvent. In this method, microliter levels of an extraction solvent was added onto a sugar cube and it was transferred into the aqueous phase containing the analytes. By manual shaking, the sugar was dissolved and the extractant was released into the aqueous phase as very tiny droplets to provide a cloudy solution. Under optimized conditions, the proposed method showed good precision (RSD less than 5.2%), high enrichment factors (266–556), and low LODs (0.09–0.25 μg/L). The method was successfully applied for the determination of the target analytes in different samples, and good recoveries (71–103%) were achieved for the spiked samples. No need for a disperser solvent and higher enrichment factors compared with conventional dispersive liquid–liquid microextraction and low cost and short sample preparation time are other advantages of the method.  相似文献   

13.
The presence of pharmaceuticals in the environment due to growing worldwide consumption has become an important problem that requires analytical solutions. This paper describes a CE determination for several nonsteroidal anti‐inflammatory drugs (ibuprofen, naproxen, ketoprofen, diclofenac, ketorolac, aceclofenac and salicylic acid) in environmental waters using hollow fiber membrane liquid‐phase microextraction. The extraction was carried out using a polypropylene membrane supporting dihexyl ether and the electrophoretic separation was performed in acetate buffer (30 mM, pH 4) using ACN as the organic modifier. Detection limits between 0.25 and 0.86 ng/mL were obtained, respectively. The method could be applied to the direct determination of the seven anti‐inflammatories in wastewaters, and five of them have been determined or detected in different urban wastewaters.  相似文献   

14.
15.
A new analytical method for the simultaneous determination of trace levels of seven prohibited N‐nitrosamines (N‐nitrosodimethylamine, N‐nitrosoethylmethylamine, N‐nitrosopyrrolidine, N‐nitrosodiethylamine, N‐nitrosopiperidine, N‐nitrosomorpholine, and N‐nitrosodiethanolamine) in cosmetic products has been developed. The method is based on vortex‐assisted reversed‐phase dispersive liquid–liquid microextraction, which allows the extraction of highly polar compounds, followed by liquid chromatography with mass spectrometry. The variables involved in the extraction process were studied to obtain the highest enrichment factor. Under the selected conditions, 75 μL of water as extraction solvent was added to 5 mL of n‐hexane sample solution and assisted by vortex mixing during 30 s to form the cloudy solution. The method was successfully validated showing good linearity (0.5–50 ng/mL), enrichment factors up to 65 depending on the target compound, limits of detection values of 1.8–50 ng/g, and good repeatability (RSD < 9.8%). Finally, the proposed method was applied to different cosmetic samples. Quantitative relative recovery values (80–113%) were obtained, thus showing that matrix effects were negligible. The achieved analytical features of the proposed method, besides of its simplicity and affordability, make it useful to perform the quality control of cosmetic products to ensure the safety of consumers.  相似文献   

16.
In this work, a simple method, namely, tandem dispersive liquid–liquid microextraction, with a high sample clean‐up is applied for the rapid determination of the antidementia drugs rivastigmine and donepezil in wastewater and human plasma samples. This method, which is based on two consecutive dispersive microextractions, is performed in 7 min. In the method, using a fast back‐extraction step, the applicability of the dispersive microextraction methods in complicated matrixes is conveniently improved. This step can be performed in less than 2 min, and very simple tools are required for this purpose. To achieve the best extraction efficiency, optimization of the variables affecting the method was carried out. Under the optimized experimental conditions, the relative standard deviations for the method were in the range of 6.9–8.7%. The calibration curves were obtained in the range of 2–1100 ng/mL with good correlation coefficients, higher than 0.995, and the limits of detection ranged between 0.5 and 1.0 ng/mL.  相似文献   

17.
Magnetic dispersive solid‐phase extraction followed by dispersive liquid?liquid microextraction coupled with gas chromatography/mass spectrometry was applied for the quantitative analysis of phenazopyridine in urinary samples. Magnetic dispersive solid‐phase extraction was carried out using magnetic graphene oxide nanoparticles modified by poly(thiophene‐pyrrole) copolymer. The eluting solvent of this step was used as the disperser solvent for the dispersive liquid?liquid microextraction procedure. To reach the maximum efficiency of the method, effective parameters including sorbent amount, adsorption time, type and volume of disperser and extraction solvents, pH of the sample solution, and ionic strength as well as desorption time, and approach were optimized, separately. Characterization of the synthesized sorbent was studied by utilizing infrared spectroscopy, scanning electron microscopy, and energy‐dispersive X‐ray analysis. Calibration curve was linear in the range of 0.5?250 ng/mL (R2 = 0.9988) with limits of detection and quantification of 0.1 and 0.5 ng/mL, respectively. Intra‐ and interday precisions (RSD%, n = 3) of the method were in the range of 4.6?5.4% and 4.0?5.5%, respectively, at three different concentration levels. Under the optimal condition, this method was successfully applied for the determination of phenazopyridine in human urine samples. The relative recoveries were obtained in the range of 85.0?89.0%.  相似文献   

18.
The aim of this study was to introduce a novel, simple, and highly sensitive preparation method for determination of tylosin in different milk samples. In the so‐called functionalized TiO2 hollow fiber solid/liquid‐phase microextraction method, the acceptor phase is functionalized TiO2 nanoparticles that are dispersed in the organic solvent and held in the pores and lumen of a porous polypropylene hollow fiber membrane. An effective functionalization of TiO2 nanoparticles has been done in the presence of aqueous H2O2 and a mild acidic ambient under UV irradiation. This novel extraction method showed excellent extraction efficiency and a high enrichment factor (540.2) in comparison with conventional hollow fiber liquid‐phase microextraction. All the experiments were monitored at λmax = 284 nm using a simple double beam UV‐visible spectrophotometer. A Taguchi orthogonal array experimental design with an OA16 (45) matrix was employed to optimize the factors affecting the efficiency of hollow fiber solid/liquid‐phase microextraction such as pH, stirring rate, salt addition, extraction time, and the volume of donor phase. This developed method was successfully applied for the separation and determination of tylosin in milk samples with a linear concentration range of 0.51–7000 μg/L (r2 = 0.991) and 0.21 μg/L as the limit of detection.  相似文献   

19.
Here, we present a method for measuring barbiturates (butalbital, secobarbital, pentobarbital, and phenobarbital) in whole blood samples. To accomplish these measurements, analytes were extracted by means of hollow‐fiber liquid‐phase microextraction in the three‐phase mode. Hollow‐fiber pores were filled with decanol, and a solution of sodium hydroxide (pH 13) was introduced into the lumen of the fiber (acceptor phase). The fiber was submersed in the acidified blood sample, and the system was subjected to an ultrasonic bath. After a 5 min extraction, the acceptor phase was withdrawn from the fiber and dried under a nitrogen stream. The residue was reconstituted with ethyl acetate and trimethylanilinium hydroxide. An aliquot of 1.0 μL of this solution was injected into the gas chromatograph/mass spectrometer, with the derivatization reaction occurring in the hot injector port (flash methylation). The method proved to be simple and rapid, and only a small amount of organic solvent (decanol) was needed for extraction. The detection limit was 0.5 μg/mL for all the analyzed barbiturates. The calibration curves were linear over the specified range (1.0 to 10.0 μg/mL). This method was successfully applied to postmortem samples (heart blood and femoral blood) collected from three deceased persons previously exposed to barbiturates.  相似文献   

20.
In the present study, hollow fiber liquid phase microextraction (HF-LPME) based on pH gradient and electromembrane extraction (EME) coupled with high-performance liquid chromatography (HPLC) was compared for the extraction of ephedrine from biological samples. The influences of fundamental parameters affecting the extraction efficiency of ephedrine were studied and optimized for both methods. Under the optimized conditions, preconcentration factors of 120 and 35 for urine and 51 and 8 for human plasma were obtained using EME and HF-LPME, respectively. The calibration curves showed good linearity for urine and plasma samples by both methods with the coefficient of estimations higher than 0.98. The limits of detection were obtained 5 and 10 ng mL(-1) using EME and 60 and 200 ng mL(-1) by HF-LPME for urine and plasma samples respectively. The relative standard deviations of the analysis were found in the range of 5.2-8.6% (n=3). The results showed that in comparison with HF-LPME based on pH gradient, EME is a much more effective transport process, providing high extraction efficiencies in very short time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号