首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetyltropic acid is an important synthetic intermediate for preparation of tropane alkaloid derivatives, which can be used as anticholinergic drugs, deliriants, and stimulants. In the present work, acetyltropic acid was successfully enantioseparated by countercurrent chromatography using sulfobutyl ether‐β‐cyclodextrin as chiral selector. A biphasic solvent system composed of n‐butyl acetate/n‐hexane/0.1 mol/L citrate buffer at pH = 2.2 containing 0.1 mol/L of sulfobutyl ether‐β‐cyclodextrin (7:3:10, v/v) was selected, which produced a suitable distribution ratio D= 1.14, D= 2.31 and a high enantioseparation factor α = 2.03. Baseline separation was achieved for preparative enantioseparation of 50 mg of racemic acetyltropic acid. A method for chiral analysis of acetyltropic acid by conventional reverse phase liquid chromatography with hydroxylpropyl‐β‐cyclodextrin as mobile phase additive was established, and formation constants of inclusion complex were determined. It was found that different substituted β‐cyclodextrin should be selected for enantioseparation of acetyltropic acid by countercurrent chromatography and reverse phase liquid chromatography.  相似文献   

2.
Recycling countercurrent chromatography was successfully applied to the resolution of 2‐(4‐bromomethylphenyl)propionic acid, a key synthetic intermediate for synthesis of nonsteroidal anti‐inflammatory drug loxoprofen, using hydroxypropyl‐β‐cyclodextrin as chiral selector. The two‐phase solvent system composed of n‐hexane/n‐butyl acetate/0.1 mol/L citrate buffer solution with pH 2.4 (8:2:10, v/v/v) was selected. Influence factors for the enantioseparation were optimized, including type of substituted β‐cyclodextrin, concentration of hydroxypropyl‐β‐cyclodextrin, separation temperature, and pH of aqueous phase. Under optimized separation conditions, 50 mg of 2‐(4‐bromomethylphenyl)propionic acid was enantioseparated using preparative recycling countercurrent chromatography. Technical details for recycling elution mode were discussed. The purities of both the S and R enantiomers were over 99.0% as determined by high‐performance liquid chromatography. The enantiomeric excess of the S and R enantiomers reached 98.0%. The recovery of the enantiomers from eluted fractions was 40.8–65.6%, yielding 16.4 mg of the S enantiomer and 10.2 mg of the R enantiomer. At the same time, we attempted to enantioseparate the anti‐inflammatory drug loxoprofen by countercurrent chromatography and high‐performance liquid chromatography using a chiral mobile phase additive. However, no successful enantioseparation was achieved so far.  相似文献   

3.
3‐Phenyllactic acid is an antimicrobial compound with broad‐spectrum activity against various bacteria and fungus. The observed difference in pharmacological activity between optical isomeric 3‐phenyllactic acid necessitates a method for enantioseparation. Chiral ligand exchange countercurrent chromatography was investigated for the enantioseparation of 3‐phenyllactic acid with a synthesized chiral ligand. A two‐phase solvent system was composed of n‐butanol/hexane/water (0.4:0.6:1, v/v/v) to which Nn‐dodecyl‐l ‐hydroxyproline was added to the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transitional metal ion. The influence factors were optimized by enantioselective liquid–liquid extraction. Baseline enantioseparation of racemic 3‐phenyllactic acid by analytical high‐speed countercurrent chromatography was achieved. The optical purities of enantiomeric 3‐phenyllactic acid reached 99.0%, as determined by chiral high‐performance liquid chromatography.  相似文献   

4.
The chiral separation ability of the full library of methylated‐β‐cyclodextrins towards pharmacologically significant racemic drugs including basic compounds was studied by chiral CE. The syntheses of all the methylated, single isomer β‐cyclodextrins were revised and optimized and the aqueous solubility of the derivatives was unambiguously established. The three most relevant commercially available methylated isomeric mixtures were also included in the screening, so a total of ten various methylated CDs were investigated. The effects of the selector concentration on the enantiorecognition properties at acidic pH were investigated. Among the dimethylated β‐cyclodextrins, the heptakis (2,6‐di‐O‐methyl)‐β‐cyclodextrin isomer (2,6‐DIMEB) resulted to be the most versatile chiral selector. Terbutaline was selected as a model compound for the in‐depth investigation of host‐guest enantiodiscrimination ability. The association constants between the two terbutaline enantiomers and 2,6‐DIMEB were determined in order to support that the enantioseparation is driven by differences is host‐guest binding. The migration order of the enantiomers was confirmed by performing spiking experiments with the pure enantiomers. 1D and 2D NMR spectroscopy was applied to the 2,3‐, and 2,6‐DIMEB/terbutaline systems to rationalize at molecular level the different enantioseparation ability of the dimethylated β‐cyclodextrin selectors.  相似文献   

5.
A new member of the family of methoxylalkylamino monosubstituted β‐cyclodextrins, mono‐6A‐(4‐methoxybutylamino)‐6A‐β‐cyclodextrin, has been developed as a chiral selector for enantioseparation in capillary electrophoresis. This amino cyclodextrin exhibited good enantioselectivities for 16 model acidic racemates including three dansyl amino acids at an optimum pH of 6.0. Excellent chiral resolutions over six were obtained for α‐hydroxy acids and 2‐phenoxypropionic acids with 3.0 mM chiral selector. The good chiral recognition for α‐hydroxyl acids was attributed to inclusion complexation, electrostatic interactions, and hydrogen bonding. The hydrogen‐bonding‐enhanced chiral recognition was revealed by NMR spectroscopy. The chiral separation of acidic racemates was further improved with the addition of methanol (≤10 vol%) as an organic additive.  相似文献   

6.
A new approach to the preparation of enantioselective porous polymer monolithic columns with incorporated chiral metal–organic framework for nano‐liquid chromatography has been developed. While no enantioseparation was achieved with monolithic poly(4‐vinylpyridine‐co‐ethylene dimethacrylate) column, excellent separations of both enantiomers of (±)‐methyl phenyl sulfoxide were achieved with its counterpart prepared after admixing metal–organic framework [Zn2(benzene dicarboxylate)(l‐lactic acid)(dmf)], which is synthesized from zinc nitrate, l ‐lactic acid, and benzene dicarboxylic acid in the polymerization mixture. These novel monolithic columns combined selectivity of the chiral framework with the excellent hydrodynamic properties of polymer monoliths, may provide a great impact on future studies in the field of chiral analysis by liquid chromatography.  相似文献   

7.
The glycopeptide antibiotic balhimycin and its haloanalogue bromobalhimycin were evaluated as chiral selectors for enantioresolution by capillary electrophoresis. In order (i) to eliminate the adsorption of the glycopeptide antibiotics on the capillary wall, (ii) to shorten the separation time and (iii) to improve the detection sensitivity, a combined approach of the dynamic surface coating technique, the co-electroosmotic flow electrophoresis technique and the partial filling technique was employed for the enantioresolution of 16 acidic racemates. The effect of experimental parameters (plug length of the partial filling solution containing the chiral selector, selector concentration and buffer pH) on enantiorecognition was investigated. Furthermore, the enantiorecognition ability imparted by balhimycin, bromobalhimycin and vancomycin were compared. For most tested compounds, the highest enantiorecognition was obtained with balhimycin as chiral selector. Only in the case of the enantioresolution of tiaprofenic acid, vancomycin showed a superior enantiorecognition.  相似文献   

8.
Summary A comparison of the enantiorecognition ability of linear, neutral polysaccharides was performed on a series of basic drug racemates in acidic running buffer (pH 3.0). Dextrin 20, Dextran 70 and Pullulan were chosen as chiral selectors for their different characteristics. Dextrin 20, high-dextrose equivalent maltodextrin, showed good enantioresolution for a limited number of racemic drugs. In contrast, Dextran 70, a low-equivalent dextrose polysaccharide, exhibited poorer enantioresolution but had wider applicability allowing nine basic racemates to be resolved; in particular, at high concentrations enantioseparation of amphetamine and congeners was achieved in relatively short time. The results obtained appear to support different mechanisms of enantiorecognition for the polysaccharides studied.  相似文献   

9.
This work deals with the enantioseparation of α‐amino acids by chiral ligand exchange high‐speed countercurrent chromatography using Nn‐dodecyl‐l ‐hydroxyproline as a chiral ligand and copper(II) as a transition metal ion. A biphasic solvent system composed of n‐hexane/n‐butanol/aqueous phase with different volume ratios was selected for each α‐amino acid. The enantioseparation conditions were optimized by enantioselective liquid–liquid extractions, in which the main influence factors, including type of chiral ligand, concentration of chiral ligand and transition metal ion, separation temperature, and pH of the aqueous phase, were investigated for racemic phenylalanine. Altogether, we tried to enantioseparate 15 racemic α‐amino acids by the analytical countercurrent chromatography, of which only five of them could be successfully enantioseparated. Different elution sequence for phenylalanine enantiomer was observed compared with traditional liquid chromatography and the proposed interactions between chiral ligand, transition metal ion (Cu2+), and enantiomer are discussed.  相似文献   

10.
A silica‐based chiral stationary phase (CSP) derived from L‐α‐norleucinyl‐ and pyrrolidinyl‐disubstituted cyanuric chloride was prepared for the enantioseparation of methyl esters of N‐(3,5‐dinitrobenzoyl) amino acids by high‐performance liquid chromatography. The chromatographic results show that effective enantioseparation of methyl esters of N‐(3,5‐dinitrobenzoyl)amino acids, except for proline, was achieved on this chiral stationary phase. The chromatographic resolution of racemic n‐propyl ester of N‐(3,5‐dinitrobenzoyl)valine on CSP‐B is better than that of racemic methyl ester of N‐(3,5‐dinitrobenzoyl)valine on CSP‐B or CSP‐A reported previously (J. Chromatogr. A, 676 (1994) 303). The comparison of the chromatographic results obtained in this study with those on CSP‐A reported previously reveals that steric effect, instead of hydrophobic interaction, between the n‐butyl group attached to the chiral center of the chiral selector and the alkyl group attached to the chiral center of the chiral selectand plays a significant role in chiral discrimination. The increase in the selectivity factor of methyl esters of N‐(3,5‐dinitrobenzoyl)amino acids with bulky alkyl groups was examined on CSP‐B.  相似文献   

11.
In this study, two polyproline‐derived chiral selectors are bonded to monolithic silica gel columns. In spite of high chiral selector coverage, the derivatization was found to have only a slight effect on the hydrodynamics of the mobile phase through the column. The enantioseparation ability of the resulting chiral monolithic columns was evaluated with a series of structurally diverse racemic test compounds. When compared to analogous bead‐based chiral stationary phases, higher enantioseparation and broader application domain were observed for monolithic columns. Moreover, the increase in flow rate produces a minor reduction of resolution, which permits to shorten analysis time. Additionally, increased loadability defines chiral polyproline derived monoliths as adequate for preparative chromatography.  相似文献   

12.
以羟丙基-β-环糊精为手性添加剂,采用反相高效液相色谱法对2-取代芳基丙酸类物质进行了手性拆分。考察了流动相的组成,包括缓冲溶液、有机改性剂以及添加剂的浓度等。缓冲溶液的pH值、有机改性剂的种类与浓度,以及添加剂的浓度对色谱峰的保留时间和分离度均有较大的影响。以YMC ODS-C_(18)(150 mm×4.6 mm,5μm)为色谱柱,乙腈-0.10 mol/L磷酸盐缓冲液(pH 3.3,含25 mmol/L添加剂)为流动相,测定了各2-取代芳基丙酸与羟丙基-β-环糊精的包结常数,考察了羟丙基-β-环糊精对各物质的包结形式。实验结果表明,羟丙基-β-环糊精与各对映体均以1∶1的形式包结,同时发现推电子取代基更有利于羟丙基-β-环糊精的包结行为,为羟丙基-β-环糊精对手性拆分的影响提供了一个有利的参考因素。  相似文献   

13.
Almost all gas-chromatographic chiral stationary phases (CSPs) are complex systems containing one or more chiral selector(s) dissolved in, or bonded to, an achiral solvent such as squalane or poly(dimethylsiloxane). The presence of different components in the total CSP, interacting independently with the analyte enantiomers, impairs the elucidation of enantiorecognition mechanisms and complicates the optimization of enantioseparations. In the present work a quantitative analysis of the influence of different factors on the observed enantioselectivity is performed. The parameters varied in this study were the composition of the CSP, the concentration and the enantiomeric excess of the chiral selector(s) and the presence of achiral selectors (including racemic compositions). Special attention is given to the determination of distribution and association constants, as well as apparent and true enantioseparation factors.  相似文献   

14.
The resolving power of a new commercial polysaccharide‐based chiral stationary phase, Sepapak‐4, with cellulose tris(4‐chloro‐3‐methylphenylcarbamate) coated on silica microparticles as chiral selector, was evaluated toward the enantioseparation of ten basic drugs with widely different structures and hydrophobic properties, using ACN as the main component of the mobile phase. A multivariate approach (experimental design) was used to screen the factors (temperature, n‐hexane content, acidic and basic additives) likely to influence enantioresolution. Then, the optimization was performed using a face‐centered central composite design. Complete enantioseparation could be obtained for almost all tested chiral compounds, demonstrating the high chiral discrimination ability of this chiral stationary phase using polar organic mobile phases made up of ACN and containing an acidic additive (TFA or formic acid), 0.1% diethylamine and n‐hexane. These results clearly illustrate the key role of the nature of the acidic additive in the mobile phase.  相似文献   

15.
In capillary electrophoresis (CE), separation of enantiomers of a chiral compound can be achieved through the chiral interactions and/or complex formation between the chiral selector and the enantiomeric analytes on leaving their diastereomeric forms with different stability constants and hence different mobilities. A great number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties towards a wide number of racemic compounds. The use of azithromycin (AZM) as a chiral selector has not been reported previously. This work reports the use of AZM as a chiral selector for the enantiomeric separations of five chiral drugs and one amino acid (tryptophan) in CE. The enantioseparation is carried out using polar organic mixtures of acetonitrile (ACN), methanol (MeOH), acetic acid and triethylamine as run buffer. The influences of the chiral selector concentration, ACN/MeOH ratio, applied voltage and capillary temperature on enantioseparation are investigated. The results show that AZM is a viable chiral selector in CE for the enantioseparation of the type of chiral drugs investigated.  相似文献   

16.
Two chloromethyl phenylcarbamate‐based chiral stationary phases, one containing an amylose‐type chiral selector (Lux Amylose 2, from Phenomenex) and the other a cellulose‐type one (Lux Cellulose‐4, from Phenomenex), were successfully used for the chiral resolution of three helical chromenes featuring a helicene‐like structure. The compound bearing a phenyl substituent on the helicene‐like structure was enantioresolved at 25°C with Lux Cellulose‐4 and a n‐hexane/1‐propanol 99:1 v/v eluent. With a n‐hexane/2‐propanol 99.8:0.2 v/v mobile phase, the same column (operated at 35°C) provided the separation of the four isomers of the compound having a hexyl residue on the helicene‐like motif and an additional asymmetric carbon. Lux Amylose‐2 was necessary for the enantioseparation of the compound having the sole hexyl residue on the helical scaffold. For the last compound a n‐hexane/2‐propanol 99.8:0.2 v/v eluent was used, and the column temperature was fixed at 5°C. The enantiomer elution order was appraised by using electronic circular dichroism and theoretical calculations. Notably, different thermodynamics of retention and enantioseparation were observed for molecules with pronounced structural similarity, that is, the enantiomer pairs of the compound containing the additional asymmetric carbon atom. Indeed, both entropically and enthalpically controlled adsorption and separation processes were observed.  相似文献   

17.
Baseline separation of ten new substituted [1-(imidazo-1-yl)-1-phenylmethyl)] benzothiazolinone and benzoxazolinone derivatives, with one chiral center, was achieved by CD-EKC using highly sulfated CDs (alpha, beta, gamma highly S-CDs) as chiral selectors. The influence of the type and concentration of the chiral selectors on the enantioseparations was investigated. The highly S-CDs exhibit a very high enantioselectivity power since they allow excellent enantiomeric resolutions compared to those obtained with the neutral CDs. The enantiomers were resolved with analysis times inferior to 2.5 min and resolution factors R(s) of 3.73, 3.90, 1.40, and 4.35 for compounds 1, 2, 3, and 5, respectively, using 25 mM phosphate buffer at pH 2.5 containing either highly S-alpha-CD, highly S-beta-CD, and highly S-gamma-CD (3 or 4% w/v) at 298 K, with an applied field of 0.30 kV/cm. The determination of the enantiomer migration order for the various analytes and the study of the analyte structure-enantioseparation relationships display the high contribution of the interactions between the analytes phenyl ring and the CDs to the enantiorecognition process. The thermodynamic study of the analyte-CD affinities permits us to improve our knowledge about the enantioseparation mechanism.  相似文献   

18.
Baseline separation of 18 new substituted benzimidazole derivatives, potent AMP‐activated protein kinase (AMPK) activators, with one chiral center, was achieved by CD‐EKC using sulfated and highly sulfated CDs (SCDs and HS‐CDs) as chiral selectors. The influence of the type and concentration of the chiral selectors on the enantioseparations was investigated. The SCDs exhibit a very high enantioselectivity power since they allow excellent enantiomeric resolutions compared to those obtained with the neutral CDs. The enantiomers were resolved with analysis times around 6 min using 25 mM phosphate buffer at pH 2.5 containing either β‐S‐CD, HS‐β‐CD, HS‐γ‐CD (3 or 4% w/v) at 25°C, with a voltage of 20 kV. The apparent association constants of the inclusion complexes were calculated. The study of the solute structure‐enantioseparation relationships seems to show the high contribution of the interactions between the solutes phenyl ring and the CDs to the enantiorecognition process. The optimized method was briefly validated (LOD less than 1%) and the purity of enantiomers of compound 3 was determined. The enantiomer migration shows reversal order depending on the kind of CD.  相似文献   

19.
Jin Z  Hu F  Wang Y  Liu G  Wang F  Pan F  Tang S 《色谱》2011,29(11):1087-1092
为了扩展多糖类手性固定相的种类,制备了基于淀粉及纤维素三(3-三氟甲基苯基氨基甲酸酯)的涂敷型手性固定相,以正己烷-异丙醇混合液为流动相,对8种手性化合物进行了高效液相色谱拆分。研究表明: 虽然与应用最广泛的分别以淀粉及纤维素三(3,5-二甲基苯基氨基甲酸酯)为手性选择因子的商品化手性柱Chiralpak AD和Chiralcel OD相比,所制备的手性固定相的手性分离能力较低,但纤维素三(3-三氟甲基苯基氨基甲酸酯)手性固定相显示出特异的手性识别能力,一些手性化合物在此固定相上得到了比在Chiracel OD上更好的分离;所制备的手性固定相的手性识别能力随流动相中异丙醇含量的降低而变好,当流动相中正己烷与异丙醇的体积比为95:5时所制备的手性固定相显示出相对较高的手性识别能力;总体来说,淀粉三(3-三氟甲基苯基氨基甲酸酯)手性固定相的手性识别能力稍强于纤维素三(3-三氟甲基苯基氨基甲酸酯)手性固定相,同时两种手性固定相的手性识别能力具有一定的互补性。  相似文献   

20.
A recycling high‐speed countercurrent chromatography protocol was proposed for the enantioseparation of brompheniramine by employing β‐cyclodextrin derivatives as a chiral selector. The two‐phase solvent system of n‐hexane/isobutyl acetate/0.10 mol/L phosphate buffer solution with a volume ratio of 2:4:6 was selected by a series of extraction experiments. Factors that affected the distribution of the enantiomers over the two‐phase system (e.g., the type and concentration of β‐cyclodextrin derivatives = pH value of the aqueous solution, and the separation temperature) were also investigated. In addition, the theory of thermodynamics is applied to verify the feasibility of the enantioseparation process and the corresponding results demonstrate that this separation process is feasible. The optimized conditions include carboxymethyl‐β‐cyclodextrin concentration of 0.010 mol/L, pH of 7.5, and temperature of 5°C. Under the optimal conditions, the purities of both monomer molecules were over 99%, and the recovery yields were 88% for (+)‐brompheniramine and 85% for (–)‐brompheniramine, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号