首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel microextraction method, termed microwave‐assisted ionic liquid/ionic liquid dispersive liquid–liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high‐performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1‐hexyl‐3‐methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1‐hexyl‐3‐methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1‐butyl‐3‐methylimidazolium tetrafluoroborate. In addition, an ion‐pairing agent (NH4PF6) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00–250.00 μg/L, with the correlation coefficients of 0.9982–0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7–105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples.  相似文献   

2.
An ultrasound‐assisted dispersive liquid–liquid microextraction based on solidification of a floating organic drop method followed by high‐performance liquid chromatography was developed for the extraction, preconcentration, and determination of trace amounts of organophosphorus pesticides in rice samples. Variables affecting the performance of both steps were thoroughly investigated. Some effective parameters on extraction were studied and optimized. Under the optimum conditions, recoveries for rice sample are in the range of 58.0–66.0%. The calibration graphs are linear in the range of 4–800 μg/kg and, limits of detection and limits of quantification are in the range of 1.5–3 and 4.2–8.5 μg/kg, respectively. The relative standard deviation for 50.0 μg/kg of organophosphorus pesticides in rice sample are in the range of 4.4–5.1% (n = 5). The obtained results show that proposed method is a fast and simple method for the determination of pesticides in cereals.  相似文献   

3.
Determination of methamphetamine in forensic laboratories is a major issue due to its health and social harm. In this work, a simple, sensitive, and environmentally friendly method based on ionic liquid dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography was established for the analysis of methamphetamine in human urine. 1‐Octyl‐3‐methylimidazolium hexafluorophosphate with the help of disperser solvent methanol was selected as the microextraction solvent in this process. Various parameters affecting the extraction efficiency of methamphetamine were investigated systemically, including extraction solvent and its volume, disperser solvent and its volume, sample pH, extraction temperature, and centrifugal time. Under the optimized conditions, a good linearity was obtained in the concentration range of 10–1000 ng/mL with determination coefficient >0.99. The limit of detection calculated at a signal‐to‐noise ratio of 3 was 1.7 ng/mL and the relative standard deviations for six replicate experiments at three different concentration levels of 100, 500, and 1000 ng/mL were 6.4, 4.5, and 4.7%, respectively. Meanwhile, up to 220‐fold enrichment factor of methamphetamine and acceptable extraction recovery (>80.0%) could be achieved. Furthermore, this method has been successfully employed for the sensitive detection of a urine sample from a suspected drug abuser.  相似文献   

4.
In situ ionic‐liquid‐dispersive liquid–liquid microextraction was introduced for extracting Sudan dyes from different liquid samples followed by detection using ultrafast liquid chromatography. The extraction and metathesis reaction can be performed simultaneously, the extraction time was shortened notably and higher enrichment factors can be obtained compared with traditional dispersive liquid–liquid microextraction. When the extraction was coupled with ultrafast liquid chromatography, a green, convenient, cheap, and efficient method for the determination of Sudan dyes was developed. The effects of various experimental factors, including type of extraction solvent, amount of 1‐hexyl‐3‐methylimidazolium chloride, ratio of ammonium hexafluorophosphate to 1‐hexyl‐3‐methylimidazolium chloride, pH value, salt concentration in sample solution, extraction time and centrifugation time were investigated and optimized for the extraction of four kinds of Sudan dyes. The limits of detection for Sudan I, II, III, and IV were 0.324, 0.299, 0.390, and 0.655 ng/mL, respectively. Recoveries obtained by analyzing the seven spiked samples were between 65.95 and 112.82%. The consumption of organic solvent (120 μL acetonitrile per sample) was very low, so it could be considered as a green analytical method.  相似文献   

5.
A dispersive liquid–liquid microextraction procedure coupled with GC‐MS is described for preconcentration and determination of banned aromatic amines from textile samples. Experimental conditions affecting the microextraction procedure were optimized. A mixture of 30 μL chlorobenzene (extraction solvent) and 800 μL ACN (disperser solvent), 5 min extraction time, and 5 mL aqueous sample volume were chosen for the best extraction efficiency by the proposed procedure. Satisfactory linearity (with correlation coefficients >0.9962) and repeatability (<9.78%) were obtained for all 20 aromatic amines; detection limits attained were much lower than the standardized liquid–liquid method. The proposed method has advantages of being quicker and easier to operate, and lower consumption of organic solvent.  相似文献   

6.
An ionic‐liquid‐based in situ dispersive liquid–liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7–10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values.  相似文献   

7.
In this work, a new method based on dispersive liquid–liquid microextraction (DLLME) preconcentration using tetrachloromethane (CCl4) as extraction solvent was proposed for the spectrophotometric determination of cadmium and copper in water and food samples. The influence factors relevant to DLLME, such as type and volume of extractant and disperser solvent, concentration of chelating reagents, pH, salt effect, were optimized. Under the optimal conditions, the limits of detection for cadmium and copper were 0.01 ng/L and 0.5 μg/L, with enhancement factors (EFs) of 3458 and 10, respectively. The tremendous contrast of EFs could come from the different maximum absorption wavelength caused by the different extraction acidity compared with some conventional works and the enhancement effect of acetone used as dilution solvent during the spectrophotometric determination. The proposed method was applied to the determination of water and food samples with satisfactory analytical results. The proposed method was simple, rapid, cost-efficient and sensitive, especially for the detection of cadmium.  相似文献   

8.
A novel procedure of sample preparation combined with high‐performance liquid chromatography with diode array detection is introduced for the analysis of highly chlorinated phenols (trichlorophenols, tetrachlorophenols, and pentachlorophenol) in wine. The main features of the proposed method are (i) low‐toxicity diethyl carbonate as extraction solvent to selectively extract the analytes without matrix effect, (ii) the combination of salting‐out assisted liquid–liquid extraction and dispersive liquid–liquid microextraction to achieve an enrichment factor of 334–361, and (iii) the extract is analyzed by high‐performance liquid chromatography to avoid derivatization. Under the optimum conditions, correlation coefficients (r) were >0.997 for calibration curves in the range 1–80 ng/mL, detection limits and quantification limits ranged from 0.19 to 0.67 and 0.63 to 2.23 ng/mL, respectively, and relative standard deviation was <8%. The method was applied for the determination of chlorophenols in real wines, with recovery rates in the range 82–104%.  相似文献   

9.
A hydroxyl‐functionalized ionic liquid, 1‐hydroxyethyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide, was employed in an improved dispersive liquid‐phase microextraction method coupled with ultra high performance liquid chromatography for the enrichment and determination of three estrogens and bisphenol A in environmental water samples. The introduced hydroxyl group acted as the H‐bond acceptor that dispersed the ionic liquid effectively in the aqueous phase without dispersive solvent or external force. Fourier transform infrared spectroscopy indicated that the hydroxyl group of the cation of the ionic liquid enhanced the combination of extractant and analytes through the formation of hydrogen bonds. The improvement of the extraction efficiency compared with that with the use of alkyl ionic liquid was proved by a comparison study. The main parameters including volume of extractant, temperature, pH, and extraction time were investigated. The calibration curves were linear in the range of 5.0–1000 μg/L for estrone, estradiol, and bisphenol A, and 10.0–1000 μg/L for estriol. The detection limits were in the range of 1.7–3.4 μg/L. The extraction efficiency was evaluated by enrichment factor that were between 85 and 129. The proposed method was proved to be simple, low cost, and environmentally friendly for the determination of the four endocrine disruptors in environmental water samples.  相似文献   

10.
A rapid and simple sample preparation method was developed for simultaneous determination of three triazine herbicides in honey samples. The selected herbicides were extracted from honey samples by ionic liquid dispersive liquid–liquid microextraction, separated on a C18 column (250 mm × 4.6 mm id, 5 μm) using acetonitrile and H2O as the mobile phase with gradient elution, and then detected by high‐performance liquid chromatography. The parameters, such as the type and volume of the extraction and disperser solvent, ion strength, pH, extraction time, and centrifuge time were optimized in order to provide the excellent extraction performance. Good linearity was showed for all the target herbicides over the tested concentration range with correlation coefficient higher than 0.994. Three spiked levels (0.005, 0.05, 0.10 mg/kg) were applied for determination of the recoveries of the targets in honey samples in the range of 80–103% with relative standard deviations not larger than 10.6%. The limits of quantification for the analytes ranged between 1.5 and 4.0 μg/kg. The developed method was applied for determination of the target compounds residues in real samples.  相似文献   

11.
A fully automated method for the determination of six phthalates in environmental water samples is described. It is based in the novel sample preparation concept of in‐syringe dispersive liquid–liquid microextraction, coupled as a front end to GC–MS, enabling the integration of the extraction steps and sample injection in an instrumental setup that is easy to operate. Dispersion was achieved by aspiration of the organic (extractant and disperser) and the aqueous phase into the syringe very rapidly. The denser‐than‐water organic droplets released in the extraction step, were accumulated at the head of the syringe, where the sedimented fraction was transferred to a rotary micro‐volume injection valve where finally was introduced by an air stream into the injector of the GC through a stainless‐steel tubing used as interface. Factors affecting the microextraction efficiency were optimized using multivariate optimization. Figures of merit of the proposed method were evaluated under optimal conditions, achieving a detection limit in the range of 0.03–0.10 μg/L, while the RSD% value was below 5% (n = 5). A good linearity (0.9956 ≥ r2 ≥ 0.9844) and a broad linear working range (0.5–120 μg/L) were obtained. The method exhibited enrichment factors and recoveries, ranging from 14.11–16.39 and 88–102%, respectively.  相似文献   

12.
Dispersive liquid–liquid microextraction coupled with high‐performance liquid chromatography‐ultraviolet detection as a fast and inexpensive technique was applied to the simultaneous extraction and determination of traces of three common herbicides, 2,4‐D, alachlor and atrazine, in aqueous samples. The critical experimental parameters, including type of the extraction and disperser solvents as well as their volumes, sample pH, salt addition, extraction time and centrifuging time, and speed were investigated and optimized. Under the optimum conditions, the calibration graphs found to be linear in the range of 0.3–200 μg/L with limits of detection in the range of 0.05–0.1 μg/L. The relative standard deviations were in the range of 4.5–6.2% (n = 7). The relative recoveries of well, tap, and river water samples which have been spiked with different levels of herbicides were 92.0–107.0, 82.0–104.0, and 82.0–86.0%, respectively.  相似文献   

13.
Dispersive liquid–liquid microextraction has been proposed as an extraction technique combined with micellar electrokinetic chromatography (MEKC) for the analysis of eight 5‐nitroimidazole compounds, including some metabolites, in water samples. Determination has been carried out using a diode array detector, employing 20 mM sodium phosphate and 150 mM SDS as separation buffer. Separation has taken place under a voltage of 25 kV and a temperature of 20°C. Samples were prepared in a buffer without micelles and they were hydrodynamically injected at 50 mbar for 25 s, producing a sweeping effect on the analytes for increasing sensitivity. Different factors involved in the dispersive liquid–liquid microextraction procedure were optimized, such as sample pH, nature, and volume of extraction and dispersive solvents in the mixture, percentage of NaCl added to sample and shaking time after the injection of the extraction and dispersive solvents. The method was characterized for water samples, achieving detection limits lower than 2.4 μg/L. Trueness was checked in river, tap, and bottled water. Dispersive liquid–liquid microextraction combined with MEKC constitutes an easy, cheap, and green alternative for 5‐nitroimidazole analysis in environmental water samples.  相似文献   

14.
An efficient in situ ionic liquid dispersive liquid–liquid microextraction followed by ultra‐performance liquid chromatography was developed to determine four neonicotinoid insecticides in wild and commercial honey samples. In this method, a hydrophobic ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate, formed by in situ reaction between potassium hexafluorophosphate and 1‐butyl‐3‐methylimidazolium bromide in sample solution, was used as the extraction solvent. In comparison with the traditional dispersive liquid–liquid microextraction method, the developed method required no dispersive solvent. To achieve high extraction efficiency and enrichment factor, the effects of various experimental parameters were studied in detail. Under the optimized conditions, the limits of detection and quantification were in the ranges of 0.30–0.62 and 1.20–2.50 μg/L, respectively. The method showed high enrichment factors (74–115) with the recoveries between 81.0 and 103.4%. The proposed method was finally applied to different wild and commercial honey samples.  相似文献   

15.
A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid–liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001–10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved.  相似文献   

16.
In this study, a method of pretreatment and speciation analysis of mercury by dispersive liquid–liquid microextraction along with CE was developed. The method was based on the fact that mercury species including methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and Hg(II) were complexed with 1‐(2‐pyridylazo)‐2‐naphthol to form hydrophobic chelates and l ‐cysteine could displace 1‐(2‐pyridylazo)‐2‐naphthol to form hydrophilic chelates with the four mercury species. Factors affecting complex formation and extraction efficiency, such as pH value, type, and volume of extractive solvent and disperser solvent, concentration of the chelating agent, ultrasonic time, and buffer solution were investigated. Under the optimal conditions, the enrichment factors were 102, 118, 547, and 46, and the LODs were 1.79, 1.62, 0.23, and 1.50 μg/L for MeHg, EtHg, PhHg, and Hg(II), respectively. Method precisions (RSD, n = 5) were in the range of 0.29–0.54% for migration time, and 3.08–7.80% for peak area. Satisfactory recoveries ranging from 82.38 to 98.76% were obtained with seawater, lake, and tap water samples spiked at three concentration levels, respectively, with RSD (n = 5) of 1.98–7.18%. This method was demonstrated to be simple, convenient, rapid, cost‐effective, and environmentally benign, and could be used as an ideal alternative to existing methods for analyzing trace residues of mercury species in water samples.  相似文献   

17.
A new pretreatment method, SPE combined with dispersive liquid–liquid microextraction, was proposed for the determination of abamectin in citrus fruit samples for the first time. In this method, fruit samples were extracted by ultrasound‐assisted extraction followed by SPE. Then, the SPE was used as a disperser solvent in the next dispersive liquid–liquid microextraction step for further purification and enrichment of abamectin. The effects of various parameters on the extraction efficiency of the proposed method were investigated and optimized. Good linearity of abamectin was obtained from 0.005 to 10.0 mg/kg for B1a and from 0.05 to 10.0 mg/kg for B1b with correlation coefficient (r2) of 0.998 for B1a and 0.991 for B1b, respectively. The LODs were 0.001 and 0.008 mg/kg (S/N = 3) for B1a and B1b, respectively. The relative recoveries at three spiked levels were ranged from 87 to 96% with the RSD less than 11% (n = 3). The method has been successfully applied to the determination of abamectin in citrus fruit samples.  相似文献   

18.
A simple and miniaturized pretreatment procedure combining matrix solid‐phase dispersion (MSPD) with ultrasound‐assisted dispersive liquid–liquid microextraction (UA‐DLLME) technique was proposed in first time for simultaneous determination of three pyrethroids (fenpropathrin, cyhalothrin and fenvalerate) in soils. The solid samples were directly extracted using MSPD procedure, and the eluent of MSPD was used as the dispersive solvent of the followed DLLME procedure for further purification and enrichment of the analytes before GC‐ECD analysis. Good linear relationships were obtained for all the analytes in a range of 5.0–500.0 ng/g with LOQs (S/N=10) ranged from 1.51 to 3.77 ng/g. Average recoveries at three spiked levels were in a range of 83.6–98.5% with RSD≤7.3%. The present method combined the advantages of MSPD and DLLME, and was successfully applied for the determination of three pyrethroids in soil samples.  相似文献   

19.
A method was established for the determination of desipramine in biological samples using liquid–liquid–liquid microextraction followed by in‐syringe derivatization and gas chromatography–nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n‐Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2–20 μg/L (r2 = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine.  相似文献   

20.
An automated dispersive liquid–liquid microextraction integrated with gas chromatography and mass spectrometric procedure was developed for the determination of three N‐nitrosamines (N‐nitroso‐di‐n‐propylamine, N‐nitrosopiperidine, and N‐nitroso di‐n‐butylamine) in water samples. Response surface methodology was employed to optimize relevant extraction parameters including extraction time, dispersive solvent volume, water sample pH, sodium chloride concentration, and agitation (stirring) speed. The optimal dispersive liquid–liquid microextraction conditions were 28 min of extraction time, 33 μL of methanol as dispersive solvent, 722 rotations per minute of agitation speed, 23% w/v sodium chloride concentration, and pH of 10.5. Under these conditions, good linearity for the analytes in the range from 0.1 to 100 μg/L with coefficients of determination (r2) from 0.988 to 0.998 were obtained. The limits of detection based on a signal‐to‐noise ratio of 3 were between 5.7 and 124 ng/L with corresponding relative standard deviations from 3.4 to 5.9% (n = 4). The relative recoveries of N‐nitroso‐di‐n‐propylamine, N‐nitrosopiperidine, and N‐nitroso di‐n‐butylamine from spiked groundwater and tap water samples at concentrations of 2 μg/L of each analyte (mean ± standard deviation, n = 3) were (93.9 ± 8.7), (90.6 ± 10.7), and (103.7 ± 8.0)%, respectively. The method was applied to determine the N‐nitrosamines in water samples of different complexities, such as tap water, and groundwater, before and after treatment, in a local water treatment plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号