首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A comparison between C18 silica and multi‐walled carbon nanotubes (MWCNTs) in the extraction of Chlorpyrifos and Phosalone in environmental water samples was carried out using HPLC. Parameters affecting the extraction were type and volume of elution solvent, pH and flow rate of sample through the adsorbent. The optimum conditions obtained by C18 cartridge for adsorption of these pesticides were 4 mL dichloromethane as elution solvent, sample pH of 5, flow rate of 1 mL/min, and those for MWCNT cartridge were 3 mL dichloromethane, pH of 5 and flow rate of 10 mL/min, respectively. Optimized mobile phase for separation and determination of these compounds by HPLC was methanol/water (80:20 v/v) with pH=5 (adjusted with phosphate buffer). Under optimal chromatographic and SPE conditions, LOD, linear range and precision (RSD n=8) were 3.03×10?3, 0.01–5.00 μg/mL and 2.7% for Chlorpyrifos and 4.03×10?4, 0.01–5.00 μg/mL and 2.3% for Phosalone, in C18 cartridge, respectively. These values for MWCNT were 4.02×10?6, 0.001–0.500 μg/mL and 1.8% for Chlorpyrifos and 1.02×10?6, 0.001–0.500 μg/mL and 1.5% for Phosalone, respectively.  相似文献   

2.
A rapid, sensitive and specific method using liquid chromatography with tandem mass spectrometric detection (LC‐MS) was developed for the analysis of sauchinone in rat plasma. Di‐O‐methyltetrahydrofuriguaiacin B was used as internal standard (IS). Analytes were extracted from rat plasma by liquid–liquid extraction using ethyl acetate. A 2.1 mm i.d. × 150 mm, 5 µm, Agilent Zorbax SB‐C18 column was used to perform the chromatographic analysis. The mobile phase was methanol–deionized water (80:20, v/v). The chromatographic run time was 7 min per injection and the flow‐rate was 0.2 mL/min. The tandem mass spectrometric detection mode was achieved with electrospray ionization interface in positive‐ion mode (ESI+). The m/z ratios [M + Na]+, m/z 379.4 for sauchinone and m/z 395.4 for IS were recorded simultaneously. Calibration curve were linear over the range of 0.01–5 µg/mL. The lowest limit of quantification was 0.01 µg/mL. The intra‐day and inter‐day precision and accuracy of the quality control samples were 2.94–9.42% and 95.79–108.05%, respectively. The matrix effect was 64.20–67.34% and the extraction recovery was 93.28–95.98%. This method was simple and sensitive enough to be used in pharmacokinetic research for determination of sauchinone in rat plasma. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A major challenge in metabolomic studies is how to extract and analyze an entire metabolome. So far, no single method was able to clearly complete this task in an efficient and reproducible way. In this work we proposed a sequential strategy for the extraction and chromatographic separation of metabolites from leaves Jatropha gossypifolia using a design of experiments and partial least square model. The effect of 14 different solvents on extraction process was evaluated and an optimized separation condition on liquid chromatography was estimated considering mobile phase composition and analysis time. The initial conditions of extraction using methanol and separation in 30 min between 5 and 100% water/methanol (1:1 v/v) with 0.1% of acetic acid, 20 μL sample volume, 3.0 mL min?1 flow rate and 25°C column temperature led to 107 chromatographic peaks. After the optimization strategy using i‐propanol/chloroform (1:1 v/v) for extraction, linear gradient elution of 60 min between 5 and 100% water/(acetonitrile/methanol 68:32 v/v with 0.1% of acetic acid), 30 μL sample volume, 2.0 mL min?1 flow rate, and 30°C column temperature, we detected 140 chromatographic peaks, 30.84% more peaks compared to initial method. This is a reliable strategy using a limited number of experiments for metabolomics protocols.  相似文献   

4.
A simple, rapid, and sensitive method based on dispersive liquid–liquid microextraction combined with HPLC‐UV detection applied for the quantification of chlordiazepoxide in some real samples. The effect of different extraction conditions on the extraction efficiency of the chlordiazepoxide drug was investigated and optimized using central composite design as a conventional efficient tool. Optimum extraction condition values of variables were set as 210 μL chloroform, 1.8 mL methanol, 1.0 min extraction time, 5.0 min centrifugation at 5000 rpm min?1, neutral pH, 7.0% w/v NaCl. The separation was reached in less than 8.0 min using a C18 column using isocratic binary mobile phase (acetonitrile/water (60:40, v/v)) with flow rate of 1.0 mL min?1. The linear response (r2 > 0.998) was achieved in the range of 0.005–10 μg mL?1 with detection limit 0.0005 μg mL?1. The applicability of this method for simultaneous extraction and determination of chlordiazepoxide in four different matrices (water, urine, plasma, and chlordiazepoxide tablet) were investigated using standard addition method. Average recoveries at two spiking levels were over the range of 91.3–102.5% with RSD < 5.0% (n = 3). The obtained results show that dispersive liquid–liquid microextraction combined with HPLC‐UV is a fast and simple method for the determination of chlordiazepoxide in real samples.  相似文献   

5.
Extraction and pre‐concentration of a bioactive marker compound, phenyl‐1,3,5‐heptatriyne from Bidens pilosa, prior to HPLC has been demonstrated using both organic and ecofriendly solvents. Non‐ionic surfactants, viz. Triton X‐100, Triton X‐114 and Genapol X‐80, were used for extraction. No back‐extraction or liquid chromatographic steps were required to remove the target phytochemical from the surfactant‐rich extractant phase. The optimized cloud point extraction procedure has been shown to be a potentially useful methodology for the preconcentration of the target analyte, with a preconcentration factor of 4–99. Moreover, the method is simple, sensitive, rapid and consumes lesser solvent than traditional methods. An isocratic chromatographic separation and quantitation was accomplished on a C18 column with acetonitrile–acidified aqueous as mobile phase at a flow rate of 1.0 mL/min, UV detection at 254 nm and specificity with photo diode‐array detector (PDA) and MS. Under the optimum experimental conditions recovery was satisfactory (99.18–100.33%) without interference from the surfactant. The method seems to be reliable with intraday precision and interday precision below 2.0%. Good linearity was obtained in the working range from 7.5 to 30 µg/mL with correlation coefficient >0.99. The limits of detection and quantitation were 1.84 and 6.13 µg/mL, respectively. The method was validated following international guidelines and successfully applied for quantitative assays of cytotoxic compound phenyl‐1,3,5‐heptatriyne in Bidens pilosa. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Iron nanoparticles were prepared by a green method following functionalization using 1‐butyl‐3‐methylimidazolium bromide. 1‐Butyl‐3‐methylimidazole iron nanoparticles were characterized using FTIR spectroscopy, energy dispersive X‐ray fluorescence, X‐ray diffraction, scanning electron microscopy and transmission electron microscopy. The nanoparticles were used in solid‐phase membrane micro‐tip extraction to separate vitamin B complex from plasma before high‐performance liquid chromatography. The optimum conditions obtained were sorbent (15 mg), agitation time (30 min), pH (9.0), desorbing solvent [water (5 mL) + methanol (5 mL) + sodium hydroxide (0.1 N) + acetic acid (d = 1.05 kg/L, pH 5.5), desorbing volume (10 mL) and desorption time (30 min). The percentage recoveries of all the eight vitamin B complex were from 60 to 83%. A high‐performance liquid chromatography method was developed using a PhE column (250 × 4.6 mm, 5.0 μm) and water/acetonitrile (95:5, v/v; pH 4.0 with 0.1% formic acid) mobile phase. The flow rate was 1.0 mL/min with detection at 270 and 210 nm. The values of the capacity, separation and resolution factor were 0.57–39.47, 1.12–6.00 and 1.84–26.26, respectively. The developed sample preparation and chromatographic methods were fast, selective, inexpensive, economic and reproducible. The developed method can be applied for analyzing these drugs in biological and environmental matrices.  相似文献   

7.
This article describes the preconcentration of methyl methacrylate in produced water by the dispersive liquid–liquid microextraction using extraction solvents lighter than water followed by gas chromatography. In the present experiments, 0.4 mL dispersive solvent (ethanol) containing 15.0 μL extraction solvent (toluene) was rapidly injected into the samples and followed by centrifuging and direct injection into the gas chromatograph equipped with flame ionization detector. The parameters affecting the extraction efficiency were evaluated and optimized including toluene (as extraction solvent), ethanol (as dispersive solvent), 15 μL and 0.4 mL (as the volume of extraction and dispersive solvents, respectively), pH 7, 20% ionic strength, and extraction's temperature and time of 20°C and 10 min, respectively. Under the optimum conditions, the figures of merits were determined to be LOD = 10 μg/L, dynamic range = 20–180 μg/L, RSD = 11% (n = 6). The maximum recovery under the optimized condition was determined to be 79.4%.  相似文献   

8.
A simple, sensitive, and reliable procedure based on stir bar sorptive extraction coupled with high‐performance liquid chromatography was applied to simultaneously extract and determine three semipolar nitrosamines including N‐nitrosodibutylamine, N‐nitrosodiphenylamine, and N‐nitrosodicyclohexylamine. To achieve the optimum conditions, the effective parameters on the extraction efficiency including desorption solvent and time, ionic strength of sample, extraction time, and sample volume were systematically investigated. The optimized extraction procedure was carried out by stir bars coated with polydimethylsiloxane. Under optimum extraction conditions, the performance of the proposed method was studied. The linear dynamic range was obtained in the range of 0.95–1000 ng/mL (r = 0.9995), 0.26–1000 ng/mL (r = 0.9988) and both 0.32–100 ng/mL (r = 0.9999) and 100–1000 ng/mL (r = 0.9998) with limits of detection of 0.28, 0.08, and 0.09 ng/mL for N‐nitrosodibutylamine, N‐nitrosodiphenylamine, and N‐nitrosodicyclohexylamine, respectively. The average recoveries were obtained >81%, and the reproducibility of the proposed method presented as intra‐ and interday precision were also found with a relative standard deviation <6%. Finally, the proposed method was successfully applied to the determination of trace amounts of selected nitrosamines in various water and wastewater samples and the obtained results were confirmed using mass spectrometry.  相似文献   

9.
A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1‐heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R2) between 0.987 and 0.999 were obtained. The LODs of the EME‐IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications.  相似文献   

10.
An accurate and sensitive high‐performance liquid chromatography method coupled with ultralviolet detection and precolumn derivatization was developed for the simultaneous quantification of the major bile acids in Artificial Calculus bovis, including cholic acid, hyodeoxycholic acid, chenodeoxycholic acid, and deoxycholic acid. The extraction, derivatization, chromatographic separation, and detection parameters were fully optimized. The samples were extracted with methanol by ultrasonic extraction. Then, 2‐bromine‐4’‐nitroacetophenone and 18‐crown ether‐6 were used for derivatization. The chromatographic separation was performed on an Agilent SB‐C18 column (250 × 4.6 mm id, 5 μm) at a column temperature of 30°C and liquid flow rate of 1.0 mL/min using water and methanol as the mobile phase with a gradient elution. The detection wavelength was 263 nm. The method was extensively validated by evaluating the linearity (r2 ≥ 0.9980), recovery (94.24–98.91%), limits of detection (0.25–0.31 ng) and limits of quantification (0.83–1.02 ng). Seventeen samples were analyzed using the developed and validated method. Then, the amounts of bile acids were analyzed by hierarchical agglomerative clustering analysis and principal component analysis. The results of the chemometric analysis showed that the contents of these compounds reflect the intrinsic quality of artificial Calculus bovis, and two compounds (hyodeoxycholic acid and chenodeoxycholic acid) were the most important markers for quality evaluating.  相似文献   

11.
A newly developed LC—APCI mass spectrometric method is described for human plasma determination of atovaquone using lapachol internal standard. A single‐step protein precipitation technique for plasma extraction of atovaquone achieving mean recovery of 94.17% (CV 8%) without compromising sensitivity (limit of quantitation 50.3 ng/mL) or linearity (50.3 ng/mL—23924.6 ng/mL) is delineated in this paper. Heated nebulizer in negative multiple reaction monitoring mode was employed with transitions m/z 365.2 → m/z 337.1 and m/z 240.9 → m/z 185.7 for atovaquone and lapachol respectively in this liquid chromatographic–tandem mass spectrometric method. Excellent chromatographic separation on a Synergi 4 μ Polar‐RP 80A (150 × 2.0 mm) column, using 100 μL of plasma extraction volume along with 10 μL of injection load, completing analysis run‐time within 2.5 min, highlights this simple yet unique bioanalytical method. The developed method can be successfully applied to pharmacokinetic studies on atovaquone suspension administered in healthy volunteers or HIV‐infected patients. Moreover full method validation results not published before are presented and discussed in detail for the first time in this article. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A high-performance liquid chromatographic method for the simultaneous determination of oxypaeoniflorin, paeoniflorin, ferric acid, naringin, and neohesperidin in a traditional Chinese medicinal preparation, refined xue-fu-zhu-yu-tang, was developed. Separations were carried out with a ZORBAX SB-C18 column along with an Agilent C18 precolumn by linear gradient elution using 1% acetic acid-methanol (v/v: 0 min, 80/20; 15 min, 70/30; 35 min, 60/40; 55 min, 60/40) as the mobile phase at a flow rate of 0.5 mL/min. The analytes were detected with a diode-array detector at their maximum UV wavelengths. The correlation coefficients of the calibration curve for the analytes exceeded 0.9999. The recoveries were in the range 95.95–104.42 % with RSD less than 1.85%, and the precision of this method was better than 1.80%. The effects of several factors on the chromatographic behavior and sample extraction of the analytes were compared. In addition, the contents of these bioactive constituents in six different samples of this preparation were analyzed by using the optimized high-performance liquid chromatographic method. The text was submitted by the authors in English.  相似文献   

13.
The current work is focused on optimization, development, and validation of a sensitive and specific reversed-phase high-performance liquid chromatography (RP-HPLC) method for the estimation of rotigotine (RTG) in bulk and nanoformulations. The RP-HPLC method was effectively optimized using the concepts of design of experiments. Critical method variables (CMVs) were screened using Plackett–Burman design. Box–Behnken, a surface response methodology-based design, was further used for the optimization of CMVs with the number of theoretical plates and retention time (min) as responses. The optimized chromatographic conditions for the RP-HPLC method were: acetonitrile proportion: 54% v/v, pH of buffer: 5.0 (10 mM), and flow rate: 0.65 mL/min. The number of theoretical plates and retention time in the study were found to be 11206 and 7.65 min, respectively. The developed method exhibited good linearity (R2 = 0.9995) within a range of 25–600 ng/mL and LOD and LOQ were found to be 9 and 12 ng/mL, respectively. The developed RP-HPLC method was found sensitive, accurate, precise, specific, robust, and stability indicating according to the regulatory guidelines. The validated method was efficiently applied for in vitro dissolution study, ex vivo nasal permeation study, and estimation of drug content of RTG nanocrystals.  相似文献   

14.
An extraction method based on dispersive nanomaterial ultrasound‐assisted microextraction was used for the preconcentration of carbofuran and propoxur insecticides in water samples prior to high‐performance liquid chromatography with UV detection. ZnS:Ni nanoparticles were synthesized based on the reaction of the mixture of zinc acetate and nickel acetate with thioacetamide in aqueous media and then loaded on activated carbon (ZnS:Ni‐AC). Different methods were used for recognizing the properties of ZnS:Ni‐AC and then this nanomaterial was used for extraction of carbamate insecticide as new adsorbent. The influence of variables on the extraction method (such as amount of adsorbent (mg: NiZnS‐AC), pH and ionic strength of sample solution, vortex and ultrasonic time (min), ultrasound temperature and desorption volume (mL) was investigated by a screening 27–4 Plackett–Burman design. Then the significant variables were optimized by using a central composite design combined with a desirability function. At optimum conditions, this method had linear response >0.0060–10 μg/mL with detection limit 0.0015 μg/mL and relative standard deviations <5.0% (n = 3).  相似文献   

15.
An efficient and simple metal–organic framework (MOF) assisted matrix solid-phase dispersion (MSPD) microextraction was developed for the extraction of the five saponins in P. ginseng leaves. The target analyses were detected by ultra high performance chromatography coupled with time-of-flight MS. Experimental conditions for MSPD microextraction were optimized by the Box–Behnken design of the response surface methodology. The optimal conditions were as follows: 20 mg adsorbent, 80% methanol–water solution for elution, 60 s grinding time, and the MOF-808 as the adsorbent. With the final optimized method, the calibration curves for five saponins showed good linearity (R2 > 0.998) within range of 0.01–100 μg/mL. In addition, analytical recoveries ranged from 87.04 to 103.78%, with the RSD below 5%. The limit of detection and LOQ range from 0.087 to 0.114 μg/mL and 0.292 to 0.379 μg/mL, respectively. Compared with the traditional extraction method and published methods, the newly MOF-assisted MSPD extract exhibited higher extraction efficiency, simpler operation, and provided a cleaner extract with low consumption of organic reagents that was applied for rapid evaluation and quality control of active compounds from plants.  相似文献   

16.
A focused and rapid microwave-assisted extraction (MAE) process was carried out and optimized for secondary metabolites from crustose lichens using Taguchi experimental design and quantitative analysis on TLC by a Camag® spectrophotodensitometer. The procedure was improved by quantitative determination of norstictic acid (NA), a common depsidone isolated from Pertusaria pseudocorallina (Sw.) Arn. Various experimental parameters that can potentially affect the NA extraction yields including extraction time, irradiation power, volume and the percentage of tetrahydrofuran (THF) were optimized. Results suggest that THF percentage and solvent volume were statistically the most significant factors. The optimal conditions were determined as follows: THF level of 100%, solvent volume of 15 mL, microwave power of 100 W and extraction time of 7 min. Compared to the reflux method, MAE showed a drastic reduction of extraction time (7 min vs. 3 h) and solvent consumption (15 mL vs. 30 mL). The NA in total yield was 90% using the two methods. The optimal conditions were applied to other crustose lichens, Aspicilia radiosa, Diploicia canescens and Ochrolechia parella for the extraction of NA, diploicine (DP) and variolaric acid (VA), with 83%, 90% and 95% of recovery, respectively.  相似文献   

17.
Dummy molecularly imprinted microspheres with danthron as template were synthesized and their performance was evaluated. Accelerated solvent extraction can rapidly and effectively remove template molecules from the microspheres. The microspheres were applied as a specific sorbent for solid‐phase extraction of six anthraquinones from slimming tea, showing excellent affinity and high selectivity to danthron and the target analytes. The molecular recognition mechanisms were discussed by the experimental validation with IR spectroscopy. The sample was treated using accelerated solvent extraction followed by dummy molecularly imprinted microspheres solid‐phase extraction. Under the optimized ultra high performance liquid chromatographic conditions, the six target analytes can be baseline separated in 8 min, and good linearity was obtained in a range of 0.1–40 μg/mL with the correlation coefficient (r2) of ≥0.9998. The method limit of quantification was in a range of 1–2 mg/kg, it can ensure analysis of anthraquinones at mg/kg level. The intra‐ and interday precision (RSD, n = 6) for the analysis of the six analytes in a slimming tea was less than 4.5 and 5.4%, respectively. The developed method can be applied for the selective extraction, effective separation, and rapid determination of six anthraquinones in slimming tea.  相似文献   

18.
An effective and simple method for polar phenols in water matrix was developed by using stir bar sorptive extraction (SBSE) based on a hydrophilic poly(vinylpyrrolididone‐divinylbenzene) (VPDB) monolithic material and HPLC analysis. To achieve optimum extraction performance for phenols, several parameters, including extraction and desorption time, desorption solvent, pH value, and ionic strength of sample matrix, were investigated. Under the optimized experimental conditions, eight phenols were directly enriched from water samples and analyzed by HPLC‐DAD. The detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method for the target compounds were achieved within the range of 0.72–1.37 and 2.40–4.27 ng/mL from spiked water, respectively. Recoveries of eight phenolic compounds were found in the range of 55.2–95.9%. The calibration curves showed the linearity ranging from 5 to 150 ng/mL with linear regression coefficient R2 values above 0.98. Method repeatability presented as intra‐ and interday precisions were also found with the RSDs less than 4.10 and 7.61%, respectively. The distribution coefficients between VPDB and water (KVPDB/W) for phenolic compounds were also calculated and compared with KO/W. Finally, the proposed method was successfully applied to the determination of the target compounds in tap water, sea water and wastewater samples.  相似文献   

19.
The present studies describe the systematic quality by design (QbD)‐oriented development and validation of a simple, rapid, sensitive and cost‐effective reversed‐phase HPLC bioanalytical method for nevirapine in rat plasma. Chromatographic separation was carried out on a C18 column using isocratic 68:9:23% v/v elution of methanol, acetonitrile and water (pH 3, adjusted by orthophosphoric acid) at a flow rate of 1.0 mL/min using UV detection at 230 nm. A Box–Behnken design was applied for chromatographic method optimization taking mobile phase ratio, pH and flow rate as the critical method parameters (CMPs) from screening studies. Peak area, retention time, theoretical plates and peak tailing were measured as the critical analytical attributes (CAAs). Further, the bioanalytical liquid–liquid extraction process was optimized using an optimal design by selecting extraction time, centrifugation speed and temperature as the CMPs for percentage recovery of nevirapine as the CAA. The search for an optimum chromatographic solution was conducted through numerical desirability function. Validation studies performed as per the US Food and Drug Administration requirements revealed results within the acceptance limit. In a nutshell, the studies successfully demonstrate the utility of analytical QbD approach for the rational development of a bioanalytical method with enhanced chromatographic separation and recovery of nevirapine in rat plasma. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A method based on ultrasound‐assisted liquid–liquid extraction and high‐performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound‐assisted liquid–liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R2 > 0.9962 over a concentration range of 1–100 μg/L) and repeatability (relative standard deviation < 6.3%). Furthermore, the detection limit (S/N = 3) of the method were ranged from 0.02 to 0.13 μg/L and the quantification limit (S/N = 10) ranged from 0.07 to 0.35 μg/L. Finally, the proposed method was applied to spiked samples and satisfactory results were achieved. These results indicate that ultrasound‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号