首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

2.
A sensitive method based on ionic liquid for single‐drop liquid microextraction coupled with HPLC‐UV was developed for the determination of carbonyl compounds in environmental waters using 1‐octyl‐3‐methylimidazolium hexafluorophosphate [C8min][PF6] as extraction solvent and 2,4‐dinitrophenylhydrazine as derivatizing agent. The extraction parameters affecting the enrichment factors such as solvent volume, pH, extraction time and salt concentration were investigated. A homemade funnel form polytetrafluoroethylene sleeve was fixed at the tip of the syringe needle and this allowed the use of 10 μL drop of ionic liquid for direct immersion extraction. Under the optimal conditions, the remarkable enrichment factors up to 150‐fold were obtained depending on the target analytes. The method has been validated when rectilinear relationship was obtained between the concentrations of analytes and peak area in the range of 5–100 ng/mL, the correlation coefficients were from 0.995 to 0.998, and the limit of detection was in the range of 0.04–2.03 ng/mL. The method was applied to monitor the concentration of carbonyl compounds in environmental waters with spiked recovery in the range of 84.2–106.9%.  相似文献   

3.
A novel two‐step extraction technique combining ionic‐liquid‐based dispersive liquid–liquid microextraction with magnetic solid‐phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high‐performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1‐octyl‐3‐methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid–liquid microextraction, and hydrophobic pelargonic acid modified Fe3O4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins‐containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid–liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid–liquid microextraction and magnetic solid‐phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3–103.7% with relative standard deviations of 3.2–6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B1, B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns.  相似文献   

4.
Dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME–SFO) was for the first time combined with field‐amplified sample injection (FASI) in CE to determine four β2‐agonists (cimbuterol, clenbuterol, mabuterol, and mapenterol) in bovine urine. Optimum BGE consisted of 20 mM borate buffer and 0.1 mM SDS. Using salting‐out extraction, β2‐agonists were extracted into ACN that was then used as the disperser solvent in DLLME–SFO. Optimum DLLME–SFO conditions were: 1.0 mL ACN, 50 μL 1‐undecanol (extraction solvent), total extraction time 1.5 min, no salt addition. Back extraction into an aqueous solution (pH 2.0) facilitated direct injection of β2‐agonists into CE. Compared to conventional CZE, DLLME–SFO–FASI–CE achieved sensitivity enhancement factors of 41–1046 resulting in LODs in the range of 1.80–37.0 μg L?1. Linear dynamic ranges of 0.15–10.0 mg L?1 for cimbuterol and 15–1000 μg L?1 for the other analytes were obtained with coefficients of determination (R2) ≥ 0.9901 and RSD% ≤5.5 (n = 5). Finally, the applicability of the proposed method was successfully confirmed by determination of the four β2‐agonists in spiked bovine urine samples and accuracy higher than 96.0% was obtained.  相似文献   

5.
A graphene oxide reinforced polymeric ionic liquids monolith was obtained by copolymerization of graphene oxide doped 1‐(3‐aminopropyl)‐3‐(4‐vinylbenzyl)imidazolium 4‐styrenesulfonate monomer and 1,6‐di‐(3‐vinylimidazolium) hexane bihexafluorophosphate cross‐linking agent. Coupled to high‐performance liquid chromatography, the monolith was used as a solid‐phase microextraction sorbent to analyze several phenolic compounds in aqueous samples. Under the optimized extraction and desorption conditions, linear ranges were 5–400 μg/L for 3‐nitrophenol, 2‐nitrophenol, and 2,5‐dichlorophenol and 2–400 μg/L for 4‐chlorophenol, 2‐methylphenol, and 2,4,6‐trichlorophenol (R2 = 0.9973–0.9988). The limits of detection were 0.5 μg/L for 3‐nitrophenol and 2‐nitrophenol and 0.2 μg/L for the rest of the analytes. The proposed method was used to determine target analytes in groundwater from an industrial park and river water. None of the analytes was detected. Relative recoveries were in the range of 75.5–113%.  相似文献   

6.
This study proposed a new ballpoint connector‐protected salt‐oil‐salt liquid phase microextraction for extraction and enrichment of trace rhein and chrysophanol in rhubarb prior to determination of the analytes by high performance liquid chromatography. In this study, a handy ballpoint connector (between ballpoint tip and ink chamber) was used as extraction device, in which its cavity was filled with n‐octanol, and the bare n‐octanol in its two opening ends was covered with a thin layer of sodium chloride film. The design subtly assembled salt film onto ballpoint connector for extraction and enrichment, which greatly improved the enrichment factors of the target analytes. Moreover, the novel procedure and its extraction mechanism were described and analyzed, and several crucial parameters reflecting the extraction effect were investigated and optimized. Under optimum conditions, high enrichment factors (247 and 127), good linearities with ≥ 0.9998, limits of detection (0.6–1.1 ng/mL), relative standard deviations of intra‐ and interday (2.2–8.8% and 4.3–8.9%), and average recoveries (97.6–98.1%), were obtained, respectively. The proposed method can not only eliminate the negative effects from viscosity and ion strength at high salt concentration of sample phase, but also make salting‐out effect be focused on small area so as to maximize the extraction effect.  相似文献   

7.
Matrix solid‐phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High‐performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid‐phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid‐phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion‐pairing agent (NH4PF6), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3–13.4 μg/kg.  相似文献   

8.
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.  相似文献   

9.
In this study, silica modified with a 30‐membered macrocyclic polyamine was synthesized and first used as an adsorbent material in SPE. The SPE was further combined with ionic liquid (IL) dispersive liquid–liquid microextraction (DLLME). Five polycyclic aromatic hydrocarbons were employed as model analytes to evaluate the extraction procedure and were determined by HPLC combined with UV/Vis detection. Acetone was used as the elution solvent in SPE as well as the dispersive solvent in DLLME. The enrichment of analytes was achieved using the 1,3‐dibutylimidazolium bis[(trifluoromethyl)sulfonyl]imide IL/acetone/water system. Experimental conditions for the overall macrocycle‐SPE–IL‐DLLME method, such as the amount of adsorbent, sample solution volume, sample solution pH, type of elution solvent as well as addition of salt, were studied and optimized. The developed method could be successfully applied to the analysis of four real water samples. The macrocyclic polyamine offered higher extraction efficiency for analytes compared with commercially available C18 cartridge, and the developed method provided higher enrichment factors (2768–5409) for model analytes compared with the single DLLME. Good linearity with the correlation coefficients ranging from 0.9983 to 0.9999 and LODs as low as 0.002 μg/L were obtained in the proposed method.  相似文献   

10.
An ultrasound‐enhanced in situ solvent formation microextraction has been developed first time and compared with ultrasound‐enhanced ionic‐liquid‐assisted dispersive liquid–liquid microextraction for the HPLC analysis of acaricides in environmental water samples. A ionic liquid ([C8MIM][PF6]) was used as the green extraction solvent through two pathways. The experimental parameters, such as the type and volume of both of the extraction solvent disperser solvent, ultrasonication time, and salt addition, were investigated and optimized. The analytical performance using the optimized conditions proved the feasibility of the developed methods for the quantitation of trace levels of acaricides by obtaining limits of detection that range from 0.54 to 3.68 μg/L. The in situ solvent formation microextraction method possesses more positive characteristics than the ionic‐liquid‐assisted dispersive liquid–liquid microextraction method (except for spirodiclofen determination) when comparing the validation parameters. Both methods were successfully applied to determining acaricides in real water samples.  相似文献   

11.
A fast, simple, and efficient salt‐assisted dispersive liquid–liquid microextraction coupled with high‐performance liquid chromatography was developed and introduced for the simultaneous enrichment, extraction, and determination of the trace levels of matrine alkaloids (sophoridine, matrine, and sophocarpine) in Sophorae Flavescentis Radix and Composite Kushen injection. Compared with conventional dispersive liquid–liquid microextraction, the proposed method, with added salt but without dispersant and centrifuging, makes the operation simpler, greener, and leads to a higher enrichment factor. The crucial parameters affecting the enrichment factors of target analytes, such as type and volume of extraction solvent, pH of sample phase, salt concentration, volume of sample phase, and extraction time, were investigated and optimized, meanwhile, the extraction mechanism of the method was analyzed and described. Under the optimized conditions, the enrichment factors of the three matrine alkaloids were 150, 178, and 227, respectively. Good linearities (r≥ 0.9992) for all analytes, low limits of detection (less than 0.08 ng/mL), satisfactory precisions (2.1–12.3%), and accuracies (recoveries, 99.3–103.9%) were achieved. The experimental results showed that the approach is a simple, fast, green, eco‐friendly, and sensitive method and can be used for the preconcentration and determination of matrine alkaloids in traditional Chinese medicines and their preparations.  相似文献   

12.
A novel hollow‐fiber liquid‐phase microextraction based on oil‐in‐salt was proposed and introduced for the simultaneous extraction and enrichment of the main active compounds of hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin in a formula of Zi‐Cao‐Cheng‐Qi decoction and the single herb, Fructus Aurantii Immaturus , Cortex Magnoliae Officinalis , Radix et Rhizoma , and Lithospermum erythrorhizon , composing the formula prior to their analysis by high‐performance liquid chromatography. The results obtained by the proposed procedure were compared with those obtained by conventional hollow‐fiber liquid‐phase microextraction, and the proposed procedure mechanism was described. In the procedure, a hollow‐fiber segment was first immersed in organic solvent to fill the solvent in the fiber lumen and wall pore, and then the fiber was again immersed into sodium chloride solution to cover a thin salt membrane on the fiber wall pore filling organic solvent. Under the optimum conditions, the enrichment factors of the analytes were 0.6–109.4, linearities were 0.002–12 μg/mL with r 2 ≥ 0.9950, detection limits were 0.6–12 ng/mL, respectively. The results showed that oil‐in‐salt hollow‐fiber liquid‐phase microextraction is a simple and effective sample pretreatment procedure and suitable for the simultaneous extraction and concentration of trace‐level active compounds in traditional Chinese medicine.  相似文献   

13.
Optimization of alcoholic‐assisted dispersive liquid–liquid microextraction of pentachlorophenol (PCP) and determination of it with high‐performance liquid chromatography (UV‐Vis detection) was investigated. A Plackett‐Burman design and a central composite design were applied to evaluate the alcoholic‐assisted dispersive liquid–liquid microextraction procedure. The effect of seven parameters on extraction efficiency was investigated. The factor studied were type and volume of extraction and dispersive solvents, amount of salt, and agitation time. According to Plackett‐Burman design results, the effective parameters were type and volume of extraction solvent and agitation time. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 170‐μL 1‐octanol and 5‐min agitation time. The enrichment factor of PCP was 242 with limits of detection of 0.04 μg L?1. The linearity was 0.1–100 μg L?1 and the extraction recovery was 92.7%. RSD for intra and inter day of extraction of PCP were 4.2% and 7.8%, respectively for five measurements. The developed method was successfully applied for the determination of PCP in environmental water samples.  相似文献   

14.
Chloroanisoles, particularly 2,4,6‐trichloroanisole, are commonly identified as major taste and odor compounds in water. In the present study, a simple and efficient method was established for the simultaneous determination of chloroanisoles and the precursor 2,4,6‐trichlorophenol in water by using low‐density‐solvent‐based simultaneous dispersive liquid–liquid microextraction and derivatization followed by gas chromatography with electron capture detection. 2,4‐Dichloroanisole, 2,6‐dichloroanisole, 2,4,6‐trichloroanisole, 2,3,4‐trichloroanisole, and 2,3,6‐trichloroanisole were the chloroanisoles evaluated. Several important parameters of the extraction‐derivatization procedures, including the types and volumes of extraction solvent and disperser solvent, concentrations of derivatization agent and base, salt addition, extraction‐derivatization time, and temperature were optimized. Under the optimized conditions (80 μL of isooctane as extraction solvent, 500 μL of methanol as disperser solvent, 60 μL of acetic anhydride as derivatization agent, 0.75% of Na2CO3 addition w/v, extraction‐derivatization temperature of 25°C, without salt addition), a good linearity of the calibration curve was observed by the square of correlation coefficients (R2) ranging from 0.9936 to 0.9992. Repeatability and reproducibility of the method were < 4.5% and <7.3%, respectively. Recovery rates ranged from 85.2 to 101.4%, and limits of detection ranged from 3.0 to 8.7 ng/L. The proposed method was applied successfully for the determination of chloroanisoles and 2,4,6‐trichlorophenol in water samples.  相似文献   

15.
This paper described a novel approach for the determination of bisphenol A by dispersive liquid‐phase microextraction with in situ acetylation prior to GC‐MS. In this derivatization/extraction method, 500 μL acetone (disperser solvent) containing 30.0 μL chlorobenzene (extraction solvent) and 30.0 μL acetic anhydride (derivatization reagent) was rapidly injected into 5.00 mL aqueous sample containing bisphenol A and K2CO3 (0.5% w/v). Within a few seconds the analyte was derivatized and extracted at the same time. After centrifugation, 1.0 μL of sedimented phase containing enriched analyte was determined by GC‐MS. Some important parameters, such as type and volume of extraction and disperser solvent, volume of acetic anhydride, derivatization and extraction time, amount of K2CO3, and salt addition were studied and optimized. Under the optimum conditions, the LOD and the LOQ were 0.01, 0.1 μg/L, respectively. The experimental results indicated that there was linearity over the range 0.1–50 μg/L with coefficient of correlation 0.9997, and good reproducibility with RSD 3.8% (n = 5). The proposed method has been applied for the analysis of drinking water samples, and satisfactory results were achieved.  相似文献   

16.
A novel dispersive liquid–liquid microextraction method based on amine‐functionalized Fe3O4 magnetic nanoparticles was developed for the determination of six phenolic acids in vegetable oils by high‐performance liquid chromatography. Amine‐functionalized Fe3O4 was synthesized by a one‐pot solvothermal reaction between Fe3O4 and 1,6‐hexanediamine and characterized by transmission electron microscopy and Fourier transform infrared spectrophotometry. A trace amount of phosphate buffer solution (extractant) was adsorbed on bare Fe3O4‐NH2 nanoparticles by hydrophilic interaction to form the “magnetic extractant”. Rapid extraction could be achieved while the “magnetic extractant” on amine‐functionalized Fe3O4 nanoparticles was dispersed in the sample solution by vortexing. After extraction, the “magnetic extractant” was collected by application of an external magnet. Some important parameters, such as pH and volume of extraction and desorption solvents, the extraction and desorption time needed were carefully investigated and optimized to achieve the best extraction efficiency. Under the optimal conditions, satisfactory extraction recoveries were obtained for the six phenolic acids in the range of 84.2–106.3%. Relative standard deviations for intra‐ and inter‐day precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied for the determination of six phenolic acids in eight kinds of vegetable oils.  相似文献   

17.
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid–liquid microextraction method was proposed for the extraction and concentration of 17‐α‐estradiol, 17‐β‐estradiol‐benzoate, and quinestrol in environmental water samples by high‐performance liquid chromatography with fluorescence detection. 1‐Hexyl‐3‐methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion‐pairing and salting‐out agent NH4PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1‐hexyl‐3‐methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid–liquid microextraction was widened.  相似文献   

18.
A novel oil‐in‐salt liquid‐phase microextraction was developed and introduced for the extraction and concentration of the trace levels of active alkaloids in Coptis chinensis prior to being analyzed by high‐performance liquid chromatography with ultraviolet detection. Also, the oil‐in‐salt extraction mechanism was analyzed, the enrichment factor and extraction recovery were redefined, and the proposed method was compared with other methods. In the approach, the mixed solvent of pentanol/octanol (6:4, v/v) and NaCl (20% w/v) are immobilized on the permutite surface in turn to form oil‐in‐salt double membranes, through which the target analytes can be molecularized though salting‐out effect and be extracted by organic solvent. The main parameters affecting the approach were investigated and optimized. Under the optimized conditions, the enrichment factors of the analytes were 30–117, the linear ranges were 0.002–2 μg/mL for jatrorrhizine, coptisine, and palmatine, and 0.001–3 μg/mL for berberine (r 2 ≥ 0.9923). The limits of detection were less than 1 ng/mL. Satisfactory recoveries (84.3%–120.3%) and precision (0.9%–7.5%) were also obtained. These results confirm that the approach is a simple and reliable sample pretreatment procedure and allows for the quantification of active alkaloids in C. chinensis at actual concentration levels.  相似文献   

19.
A novel microextraction method, termed microwave‐assisted ionic liquid/ionic liquid dispersive liquid–liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high‐performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1‐hexyl‐3‐methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1‐hexyl‐3‐methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1‐butyl‐3‐methylimidazolium tetrafluoroborate. In addition, an ion‐pairing agent (NH4PF6) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00–250.00 μg/L, with the correlation coefficients of 0.9982–0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7–105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples.  相似文献   

20.
In this study, ionic liquid (IL) supported magnetic dispersive solid‐phase microextraction was developed and a systematic investigation was conducted on imidazolium ILs for their extraction performance. This nano‐based pretreatment procedure was then applied for the determination of acaricides in fruit juice samples for the first time. A feature of this technique is that the commonly laborious chemical modification of magnetic nanoparticles (MNPs) was skillfully circumvented. Because of the combination of ILs, dispersive liquid–liquid microextraction, and dispersive MNP solid‐phase microextraction, the extraction efficiency can be significantly improved using commercial MNPs. Parameters of the extraction method were investigated by one‐factor‐at‐a‐time approach. The optimal experimental conditions were as follows: emulsification for 2 min by sonication with the addition of 50 μL [C6MIM][NTf2] in the dispersive liquid–liquid microextraction step and vortexing for 90 s after adding 40 mg spherical barium ferrite nanoparticles (20 nm). The desorption time was 2 min. Good linearity (0.5–500 ng/mL) and detection limits within the range of 0.05–0.53 ng/mL were achieved. The application of the proposed method was demonstrated by the analysis of real fruit juice samples, in which recoveries between 85.1 and 99.6% were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号