首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface‐grafting ion‐imprinting technology was applied to synthesis of a new Co(II)‐imprinted polymer [Co(II)‐IP], which could be used for selective removal of Co(II) from aqueous solutions. The prepared polymer was characterized by using the infrared spectra (IR), X‐ray diffractometer (XRD), X‐ray energy dispersion spectroscopy (EDS) and scanning electron microscopy (SEM). The maximum adsorption capacity values for the Co(II)‐imprinted polymer and non‐imprinted polymer (NIP) were 22 and 8 mg/g, respectively. The Freundlich equation fitted the adsorption isotherm data well. The applicability of two kinetic models including pseudo‐first‐order and pseudo‐second‐order models was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium capacity, and correlation coefficients. Results suggested that chemical process could be the rate‐limiting step in the adsorption process. And the adsorption of Co(II) on the Co(II)‐imprinted polymer was endothermic. The relative selectivity coefficients of the Co(II)‐imprinted polymer for Co(II)/Pb(II), Co(II)/Cu(II), Co(II)/Ni(II), Co(II)/Sr(II) and Co(II)/Cs(I) were respectively 11.5, 6.1, 13.8, 9.4, and 8.1 times greater than that of the non‐imprinted polymer. Eventually, the desorption conditions of the adsorbed Co(II) from the Co(II)‐imprinted polymer were also studied in batch experiments.  相似文献   

2.
A novel molecularly imprinted polymer based on graphene oxide was prepared as a solid‐phase extraction adsorbent for the selective adsorption and extraction of cyromazine from seawater samples. The obtained graphene oxide molecularly imprinted polymer and non‐imprinted polymer were nanoparticles and characterized by scanning electron microscopy. The imprinted polymer showed higher adsorption capacity and better selectivity than non‐imprinted polymer, and the maximum adsorption capacity was 14.5 mg/g. The optimal washing and elution solvents for molecularly imprinted solid phase extraction procedure were 2 mL of acetonitrile/water (80:20, v/v) and methanol/acetic acid (70:30, v/v), respectively. The recoveries of cyromazine in the spiked seawater samples were in the range of 90.3–104.1%, and the relative standard deviation was <5% (n = 3) under the optimal procedure and detection conditions. The limit of detection of the proposed method was 0.7 μg/L, and the limit of quantitation was 2.3 μg/L. Moreover, the imprinted polymer could keep high adsorption capacity for cyromazine after being reused six times at least. Finally, the synthesized graphene oxide molecularly imprinted polymer was successfully used as a satisfied sorbent for high selectivity separation and detection of cyromazine from seawater coupled with high‐performance liquid chromatography.  相似文献   

3.
Copper(II)‐ion imprinted silica gel (Cu‐IISG) sorbent was synthesized by surface imprinting technique and was employed as a selective solid‐phase extraction material for on‐line preconcentration and separation, then coupled with atomic absorption spectrometry (AAS) determination of Cu(II). The higher selectivity coefficient of Cu‐IISG for Cu(II) in the presence of competitive ions such as Fe(III), Ni(II) and Zn(II) was above 411, which was 35 times of NISG. The static adsorption capacity and dynamic adsorption capacity were 41.11 mg g?1 and 16.20 mg g?1, respectively. The Cu‐IISG offered a fast kinetics for the adsorption and desorption of Cu(II), which can be used for on‐line preconcentration and detection. Two certified reference materials of GBW07301a sediment and GBW07401 soil were analyzed and the determined values were in a good agreement with the certified values. The developed method was also successfully applied to the determination of trace copper in tea leaf with satisfactory results (recovery between 96.3% and 102.3%).  相似文献   

4.
In this work, a novel surface molecularly imprinted polymer with high adsorption capacity, high adsorption rate, and high selectivity for fluoroquinolones was prepared on the surface of UiO‐66‐NH2, which is a kind of metal‐organic framework. The surface morphology and adsorption properties of this molecularly imprinted polymer were investigated. The maximum adsorption capacity was 99.19 mg/g, and adsorption equilibrium was achieved within 65 s. Combined with reversed‐phase high‐performance liquid chromatography, the molecularly imprinted polymer was used to selectively enrich, separate and analyze fluoroquinolones present in lake water. The results showed that the recoveries of the four fluoroquinolones were 92.6–100.5%, and the relative standard deviations were 2.9–6.4% (n = 3). The novel molecularly imprinted polymer is an excellent adsorbent and has broad application prospects in the enrichment and separation of trace analytes in complex samples.  相似文献   

5.
Novel molecularly imprinted chitosan microspheres were prepared on the surface of magnetic graphene oxide, with deep eutectic solvents both as a functional monomer and template. The prepared molecularly imprinted chitosan microspheres‐magnetic graphene oxide was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, Brunauer‐Emmett‐Teller surface area, thermogravimetric analysis were subsequently combined with solid‐phase micro‐extraction for simultaneous separation and enrichment of the extraction of chlorophenols from environmental water. Factors affecting the extraction efficiency of chlorophenols were optimized using response surface methodology. The actual extraction capacities under the optimal conditions (liquid to solid ratio = 3, cycles of adsorption/desorption = 5, 40°C extraction temperature, and extraction time for 35 min) were 86.90 mg/g. Compared to the traditional materials, the molecularly imprinted chitosan microspheres‐magnetic graphene oxide produced higher selectivity and extraction capacity.  相似文献   

6.
In this work, we report the first application of ion‐imprinted technology via precipitation polymerization for simple and practical determination of rubidium ions. The rubidium‐ion‐imprinted polymer nanoparticles were prepared using dibenzo‐21‐crown‐7 as a selective ligand, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross linker, and 2,2′‐azobisisobutyronitrile as radical initiator. The resulting powder material was characterized using scanning electron microscopy, which showed colloidal nanoparticles of 100–200 nm in diameter and slightly irregular in shape. The maximum adsorption capacity of the ion imprinted particles was 63.36 μmol/g. The experimental conditions such as nature and concentration of eluent, pH, adsorption and desorption times, weight of the polymer material, aqueous phase and desorption agent volumes were also studied. Finally, selectivity of the prepared IIP particles toward rubidium ion was investigated in the presence of some foreign metal ions.  相似文献   

7.
Magnetic molecularly imprinted polymer nanoparticles for di‐(2‐ethylhexyl) phthalate were synthesized by surface imprinting technology with a sol–gel process and used for the selective and rapid adsorption and removal of di‐(2‐ethylhexyl) phthalate from aqueous solution. The prepared magnetic molecularly imprinted polymer nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and vibrating sample magnetometry. The adsorption of di‐(2‐ethylhexyl) phthalate onto the magnetic molecularly imprinted polymer was spontaneous and endothermic. The adsorption equilibrium was achieved within 1 h, the maximum adsorption capacity was 30.7 mg/g, and the adsorption process could be well described by Langmuir isotherm model and pseudo‐second‐order kinetic model. The magnetic molecularly imprinted polymer displayed a good adsorption selectivity for di‐(2‐ethylhexyl) phthalate with respect to dibutyl phthalate and di‐n‐octyl phthalate. The reusability of magnetic molecularly imprinted polymer was demonstrated for at least eight repeated cycles without significant loss in adsorption capacity. The adsorption efficiencies of the magnetic molecularly imprinted polymer toward di‐(2‐ethylhexyl) phthalate in real water samples were in the range of 98–100%. These results indicated that the prepared adsorbent could be used as an efficient and cost‐effective material for the removal of di‐(2‐ethylhexyl) phthalate from environmental water samples.  相似文献   

8.
A new Cu(II)‐imprinted salen functionalized silica gel adsorbent was synthesized by surface imprinting technique and was employed as a selective solid phase extraction material for Cu2+ removal from aqueous solutions. The samples were characterized by FT‐IR, 1HNMR, 13CNMR, CHNS and DTG techniques. The BET surface area of the silica gel was also determined. The adsorbent was then used for removal of Cu2+ from aqueous solutions under different experimental conditions. It was concluded that the synthesized imprinted silica gel had higher selectivity and capacity compared to the non‐imprinted silica gel and the maximal adsorption capacity of 67.3 and 56.5 mg.g?1 was obtained respectively for ion‐imprinted and non‐imprinted adsorbents. The relative selectivity factor (β) of 50.32 and 31.94 was obtained respectively for Cu2+/Ni2+ and Cu2+/Zn2+ pairs. The dynamic adsorption capacity of the imprinted adsorbent was close to the static adsorption capacity due to the fast kinetic of adsorption. Furthermore, the ion‐imprinted adsorbent was recovered and repeatedly used and satisfactory adsorption capacity with acceptable precision was obtained. Each experiment was repeated at least for three times and the mean and the standard deviation for each measurement were calculated. The applicability of the method was examined for Zayandehrood water as real sample. Acceptabe standard deviation was obtained.  相似文献   

9.
A surface carbamazepine‐imprinted polymer was grafted and synthesized on the SiO2/graphene oxide surface. Firstly SiO2 was coated on synthesized graphene oxide sheet using the sol–gel technique. Prior to polymerization, the vinyl group was incorporated on to the surface of SiO2/graphene oxide to direct selective polymerization on the surface. Methacrylic acid, ethylene glycol dimethacrylate and ethanol were used as monomer, cross‐linker and porogen, respectively. Nonimprinted polymer was also prepared for comparison. The properties of the molecularly imprinted polymer were characterized using field‐emission scanning electron microscopy and Fourier‐transform infrared spectroscopy. The surface molecularly imprinted polymer was utilized as an adsorbent of dispersive solid‐phase extraction for separation and preconcentration of carbamazepine. The effects of the different parameters influencing the extraction efficiency, such as sample pH were investigated and optimized. The specificity of the molecular imprinted polymer over the nonimprinted polymer was examined in absence and presence of competitive drugs. The carbamazepine calibration curve showed linearity in the ranges 0.5–500 μg/L. The limits of detection and quantification under the optimized conditions were 0.1 and 0.3 μg/L, respectively. The within‐day and between‐day relative standard deviations (n = 3) were 3.6 and 4.3%, respectively. Furthermore, the relative recoveries for spiked biological samples were above 85%.  相似文献   

10.
A novel 17β‐estradiol molecularly imprinted polymer was grafted onto the surface of initiator‐immobilized silica by surface‐initiated atom transfer radical polymerization. The resulting molecularly imprinted polymer was characterized by elemental analysis and thermogravimetric analysis. The binding property of molecularly imprinted polymer for 17β‐estradiol was also studied with both static and dynamic methods. The results showed that the molecularly imprinted polymer possessed excellent recognition capacity for 17β‐estradiol (180.65 mg/g at 298 K), and also exhibited outstanding selectivity for 17β‐estradiol over the other competitive compounds (such as testosterone and progesterone). Then, the determination of trace 17β‐estradiol in beef samples was successfully developed by using molecularly imprinted polymer solid‐phase extraction coupled with high‐performance liquid chromatography. The limit of detection was 0.25 ng/mL, and the amount of 17β‐estradiol in beef samples was detected at 2.83 ng/g. This work proposed a sensitive, rapid, reliable, and convenient approach for the determination of trace 17β‐estradiol in complicated beef samples.  相似文献   

11.
A novel multiple‐template surface molecularly imprinted polymer (MTMIP) was synthesized using ofloxacin and 17β‐estradiol as templates and modified monodispersed poly(glycidylmethacrylate‐co‐ethylene dimethacrylate) (PGMA/EDMA) beads as the support material. Static adsorption, solid‐phase extraction and high‐performance liquid chromatography were performed to investigate the adsorption properties and selective recognition characteristics of the polymer templates and their structural analogs. The maximum binding capacities of ofloxacin and 17β‐estradiol on the MTMIP were 9.0 and 6.6 mg/g, respectively. Compared with the corresponding nonimprinted polymer, the MTMIP exhibited a much higher adsorption performance and selectivity toward three quinolones and three estrogens, which are common drug residues in food. The MTMIP served as a simple and effective pretreatment method and could be successfully applied to the simultaneous analysis of multiple target components in complex samples. Furthermore, the MTMIP may find useful applications as a solid‐phase absorbent in the simultaneous determination of trace quinolones and estrogens in milk samples, as the recoveries were in the range 77.6–98.0%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The development of a simple and effective method for the isolation and purification of sulfadiazine residues in food of animal origin is of great significance since it is a great danger to human health. An off‐line molecularly imprinted solid‐phase extraction with high‐performance liquid chromatography method was proposed for the selective pretreatment and determination of sulfadiazine in eggs, rapidly and effectively. The molecularly imprinted polymer was proved to have a homogeneous spherical structure and porous surface morphology with excellent adsorption capacity of 5258 μg/g for sulfadiazine. The newly established method showed a good linearity in the range of 0–200 μg/L, low limits of detection (0.06 μg/L), acceptable reproducibility (RSD, 2.60–5.03%, n = 3), and satisfactory relative recoveries (78.22–86.10%). It was demonstrated that the proposed molecularly imprinted solid‐phase extraction with high‐performance liquid chromatography method could be applied to determine sulfadiazine in eggs, which simplified the pretreatment procedure and improved the accuracy of the analysis process by reducing the loss of sulfadiazine in the fat‐removing procedure compared with traditional methods. Molecularly imprinted solid‐phase extraction with excellent selectivity and adsorption capacity is a simple, rapid, selective, and effective pretreatment method for the determination of sulfadiazine in egg samples.  相似文献   

13.
A vanadium ion‐imprinted polymer was synthesized in the presence of V(V) and N‐benzoyl‐N‐phenyl hydroxyl amine using 4‐vinyl pyridine as the monomer, ethylene glycol dimethacrylate as the cross linker and 2,2’‐azobis(isobutyronitrile) as the initiator. The imprinted V(V) ions were completely removed by leaching the polymer with 5 mol/L nitric acid, and the polymer structure was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The ion‐imprinted polymer was used as the sorbent in the development of the solid‐phase extraction method for V(V) prior to its determination by electrothermal atomic absorption spectrometry. The maximum sorption capacity for V(V) ions was 26.7 mg/g at pH 4.0. Under the optimum conditions, for a sample volume of 150.0 mL, an enrichment factor of 289.0 and a detection limit of 6.4 ng/L were obtained. The developed method was successfully applied to the determination of vanadium in parsley, zucchini, black tea, rice, and water samples.  相似文献   

14.
A new three‐dimensional graphene oxide‐wrapped melamine foam was prepared and used as a solid‐phase extraction substrate. β‐Cyclodextrin was fabricated onto the surface of three‐dimensional graphene oxide‐wrapped melamine foam by a chemical covalent interaction. In view of a specific surface area and a large delocalized π electron system of graphene oxide, in combination with a hydrophobic interior cavity and a hydrophilic peripheral face of β‐cyclodextrin, the prepared extraction material was proposed for the determination of flavonoids. In order to demonstrate the extraction properties of the as‐prepared material, the adsorption energies were theoretically calculated based on periodic density functional theory. Static‐state and dynamic‐state binding experiments were also investigated, which revealed the monolayer coverage of flavonoids onto the β‐cyclodextrin/graphene oxide‐wrapped melamine foams through the chemical adsorption. 1H NMR spectroscopy indicated the formation of flavonoids–β‐cyclodextrin inclusion complexes. Under the optimum conditions, the proposed method exhibited acceptable linear ranges (2–200 μg/L for rutin and quercetin‐3‐O‐rhamnoside; 5–200 μg/L for quercetin) with correlation coefficients ranging from 0.9979 to 0.9994. The batch‐to‐batch reproducibility (= 5) was 3.5–6.8%. Finally, the as‐established method was satisfactorily applied for the determination of flavonoids in Lycium barbarum (Goji) samples with relative recoveries in the range of 77.9–102.6%.  相似文献   

15.
Curcumin widely exists in food, and rapid selective and accurate detection of curcumin have great significance in chemical industry. In this experiment, a new magnetic biocompatibility molecularly imprinted polymer was prepared with nontoxic and biocompatible Zein to adsorb curcumin selectively. The polymer has high biocompatibility, good adsorption capacity, and specific adsorption for curcumin. Combined with portable electrochemical workstations, the polymer can be used to detect curcumin rapidly and cost‐effectively. Using curcumin as a template and Zein as the crosslinking agent, the polymers were synthesized on the surface of Fe3O4 particles for solid phase extraction. The experimental results showed that the polymer reached large adsorption capacity (32.12 mg/g) with fast kinetics (20 min). The adsorption characteristic of the polymer followed the Langmuir isotherm and pseudo‐second‐order kinetic models. Hexacyanoferrate was used as electrochemical probe to generate signals, and the linear range was 5–200 µg/mL for measuring curcumin. The experimental analysis showed that the polymer was an ideal material for selective accumulation of curcumin from complex samples. This approach has been successfully applied to the determination of curcumin in food samples with electrochemical detection, indicating that this is a feasible and practical technique.  相似文献   

16.
A metal ion‐imprinted microsphere was prepared by surface molecular template polymerization. Trimethylolpropane trimethacrylate (TRIM), zinc ions, 1,12‐dodecanediol‐O, O′‐diphenyl phosphonic acid (DDDPA) were used as a crosslinking agent, an imprint molecule, and a functional host molecule. The Zn(II)‐imprinted microspheres, which are spherically well‐defined particles, were prepared by using water‐in‐oil‐in‐water (W/O/W) multiple emulsions. The combination of TRIM and DDDPA serves to align the recognition sites resulting in better template sites produced on the polymer surface. We firstly conducted diagnostic zinc‐ and copper‐ion adsorption tests with the Zn(II)‐imprinted and unimprinted microspheres in order to make an assessment on the effectiveness of the molecular imprinting technique. Further, the metal‐imprinted microspheres were applied to the column operation. The separation and recovery of metals were carried out by an adsorption column packed with the Zn(II)‐imprinted microspheres. This performance was compared to that of commercial chelating resins that possess similar phosphoric functional groups. The Zn(II)‐imprinted polymer shows an extremely high selectivity to the imprinted zinc ions compared to that of the commercial chelating resin. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 689–696, 2000  相似文献   

17.
A simple strategy was developed for the preparation of multi‐hollow magnetic molecularly imprinted polymers by incorporating 3‐indolebutyric acid and ferroferric oxide nanoparticles simultaneously into a poly(styrene‐co‐methacrylic acid) copolymer matrix. The as prepared absorbents were characterized using scanning electron microscopy, Fourier‐transform infrared spectroscopy and mercury porosimetry. The adsorption isotherms of indolebutyric acid revealed that there are two types of affinity binding sites in the absorbents. The apparent maximum binding capacity and dissociation constant were 17.88 mg/g and 158.7 μg/mL for high‐affinity binding sites and 9.310 mg/g and 35.04 μg/mL for low‐affinity binding sites, respectively. The results testified that multi‐hollow magnetic molecularly imprinted polymers possessed excellent recognition capacity and fast kinetic binding behavior to the objective molecules due to the high specific surface area as large as 511.3 m2/g. Recoveries of 75.5–86.8% were obtained for the indolebutyric acid spiked at three concentration levels in blank and pear samples.  相似文献   

18.
Considering the importance of developing a new analytical approach for pesticide residue detection for the sake of ensuring food safety, a β‐cyclodextrin based molecularly imprinted polymer was prepared for selective determination of carbendazim. The polymers consist of a porous and hollow structure demonstrating the selective abundant adsorption sites for carbendazim molecule. The selectivity and adsorption capacity of the imprinted polymers were analyzed with dispersive solid‐phase extraction and analyzed with high performance liquid chromatography coupled with ultraviolet. The results of imprinted polymers were higher than non‐imprinted polymers with the maximum adsorption capacity of 3.65 mg/g within 30 min of total adsorption time. The reusability of the imprinted polymers was determined to evaluate its effectiveness and stability, which proved that the polymers lost 10% efficiency within seven consecutive recycles. The developed method displayed good linearity over the concentration range of 0.05–2.0 mg/L. The recovery percentage of 81.33–97.23 with relative standard deviations of 1.49–4.66% was obtained from spiked apple, banana, orange, and peach samples with a limit of detection of 0.03 mg/L and a limit of quantification of 0.10 mg/L (signal to noise ratio = 3/10). The overall performance of the proposed method evident that this technique provided a desirable outcome and it can be used as a convenient approach, as it qualifies the analytical standards.  相似文献   

19.
A class‐specific macrolide molecularly imprinted polymer was synthesized by precipitation polymerization using tulathromycin as the template and methacrylic acid as the functional monomer. The polymers revealed different specific adsorption and imprinting factor for macrolides with different spatial arrangement of side chains as well as lactonic ring size. And the molecularly imprinted polymer possessed maximum adsorption capacity (54.1 mg/g) and highest imprinting factor (2.4) toward 15‐membered ring azithromycin. On the basis of molecularly imprinted polymer dispersive solid‐phase extraction, a rapid, selective, and reproducible method for simultaneous determination of seven macrolide antibiotics residues in pork was established by using liquid chromatography with tandem mass spectrometry. At spiking levels of 5, 10, 25, and 100 μg/kg, average recoveries of seven macrolides ranged from 68.6 to 95.5% with intraday and interday relative standard deviations below 8%. The limits of detection and limits of quantification were 0.2–0.5 and 0.5–2.0 μg/kg, respectively.  相似文献   

20.
A novel metal‐ion‐mediated complex‐imprinted‐polymer‐coated solid‐phase microextraction (SPME) fiber used to specifically recognize thiabendazole (TBZ) in citrus and soil samples was developed. The complex‐imprinted polymer was introduced as a novel SPME coating using a “complex template” constructed with Cu(II) ions and TBZ. The recognition and enrichment properties of the coating in water were significantly improved based on the metal ion coordination interaction rather than relying on hydrogen bonding interactions that are commonly applied for the molecularly imprinting technique. Several parameters controlling the extraction performance of the complex‐imprinted‐polymer‐coated fiber were investigated including extraction solvent, pH value, extraction time, metal ion species, etc. Furthermore, SPME coupled with HPLC was developed for detection of TBZ, and the methods resulted in good linearity in the range of 10.0–150.0 ng/mL with a detection limit of 2.4 ng/mL. The proposed method was applied to the analysis of TBZ in spiked soil, orange, and lemon with recoveries of 80.0–86.9% and RSDs of 2.0–8.1%. This research provides an example to prepare a desirable water‐compatible and specifically selective SPME coating to extract target molecules from aqueous samples by introducing metal ions as the mediator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号