首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The matrix-assisted pulsed laser evaporation (MAPLE) technique offers an efficient mechanism to transfer soft materials from the condensed to the vapor phase, preserving the versatility, ease of use and high deposition rates of the pulsed laser deposition (PLD) technique. The materials of interest (polymers, biological cells, proteins, …) are diluted in a volatile solvent. Then the solution is frozen and irradiated with a pulsed laser beam. Here, important results of MAPLE deposition of polymer, biomaterials and nanoparticle films are summarized. Finally, the MAPLE mechanism is discussed. A review of experimental and theoretical works points out that the simple model of individual molecule evaporation must be abandoned. Solute concentration, solubility, evaporation temperature of solvents, laser pulse power density and laser penetration depth emerge as important parameters to explain the morphology of the MAPLE-deposited films.  相似文献   

2.
We have compared the quality of carbon films deposited with magnetically guided pulsed laser deposition (MGPLD) and conventional pulsed laser deposition (PLD). In MGPLD, a curved magnetic field is used to guide the plasma but not the neutral species to the substrate to deposit the films while, in conventional PLD, the film is deposited with a mixture of ions, neutral species and clusters. A KrF laser pulse (248 nm) was focused to intensities of 10 GW/cm2 on a carbon source target and a magnetic field strength of 0.3 T was used to steer the plasma around a curved arc to the deposition substrate. Electron energy loss spectroscopy was used in order to measure the fraction of sp3 bonding in the films produced. It is shown that the sp3 fraction, and hence the diamond-like character of the films, increased when deposited only with the pure ion component by MGPLD compared with films produced by the conventional PLD technique. The dependence of film quality on the laser intensity is also discussed. Received: 7 December 2000 / Accepted: 20 August 2001 / Published online: 2 October 2001  相似文献   

3.
Layered double hydroxides (LDHs) have been widely studied due to their applications as multifunctional materials, catalysts, host materials, anionic exchangers, adsorbents for environmental contaminants and for the immobilization of biological materials. As thin films, LDHs are good candidates for novel applications as sensors, corrosion resistant coatings or components in electro optical devices. For these applications, lamellar orientation-controlled film has to be fabricated.In this work, the successful deposition of LDH and their derived mixed oxides thin films by laser techniques is reported. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were the methods used for thin films deposition. The ability of Mg-Al LDHs as a carrier for metallic particles (Ag) has been considered. Frozen targets containing 10% powder in water were used for MAPLE, while for PLD the targets consisted in dry-pressed pellets.The structure and the surface morphology of the deposited films were examined by X-ray Diffraction, Atomic Force Microscopy, Scanning Electron Microscopy and Secondary Ion Mass Spectrometry.  相似文献   

4.
Matrix assisted pulsed laser evaporation (MAPLE) has been applied for deposition of thin polyethylene glycol (PEG) films with infrared laser light at 1064 nm. We have irradiated frozen targets (of 1 wt.% PEG dissolved in water) and measured the deposition rate in situ with a quartz crystal microbalance. The laser fluence needed to produce PEG films turned out to be unexpectedly high with a threshold of 9 J/cm2, and the deposition rate was much lower than that with laser light at 355 nm. Results from matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis demonstrate that the chemistry, molecular weight and polydispersity of the PEG films were identical to the starting material. Studies of the film surface with scanning electron microscopy (SEM) indicate that the Si-substrate is covered by a relatively homogenous PEG film with few bare spots.  相似文献   

5.
Indium tin oxide (ITO) films have been deposited by pulsed laser deposition (PLD) at 355 nm. Even though the absorption of laser light at the wavelength 355 nm is much smaller than that of the standard excimer lasers for PLD at 248 nm and 193 nm, high-quality films can be produced. At high fluence and at high substrate temperatures, the specific resistivity of the films, 2–3×10-4 Ω cm, is comparable to values obtained with excimer lasers, whereas the resistivities obtained at room temperature are somewhat higher than those of films produced by excimer lasers. The transmission coefficient of visible light, about 0.9, is also comparable to values for films deposited by excimer lasers. The crystalline structure of films produced at 355 nm is similar to that of samples produced by these lasers. Received: 16 January 2001 / Accepted: 24 July 2001 / Published online: 17 October 2001  相似文献   

6.
Thin films of the protein, lysozyme, have been deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Frozen targets of 0.3-1.0 wt.% lysozyme dissolved in ultrapure water were irradiated by laser light at 355 nm with a fluence of 2 J/cm2. The surface quality of the thin lysozyme films of different thickness deposited on 7 mm × 7 mm Si-〈1 0 0〉-wafers was investigated with scanning electron microscopy and atomic force microscopy. Already at comparatively low thickness, ∼20 nm, the substrate is covered by intact lysozyme molecules and fragments. The concentration of lysozyme in the ice matrix apparently does not play any significant role for the morphology of the film. The morphology obtained with MAPLE has been compared with results for direct laser irradiation of a pressed lysozyme sample (i.e. pulsed laser deposition (PLD)).  相似文献   

7.
Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPLE has been applied for deposition of fullerenes for the first time and we have studied the growth of thin films of solid C60. The fragmentation of C60 fullerene molecules induced by ns ablation in vacuum of a frozen anisole target with C60 was investigated by matrix-assisted laser desorption/ionization (MALDI). Our findings show that intact fullerene films can be produced with laser fluences ranging from 0.15 J/cm2 up to 1.5 J/cm2.  相似文献   

8.
Cubic boron nitride (c-BN) films of 200–420 nm thickness and high phase purity were deposited on silicon (100) substrates by ion-assisted pulsed laser deposition (IA PLD)from a boron nitride target using a KrF-excimer laser, and by plasma-enhanced physical vapor deposition (PE PVD)with a hollow-cathode arc evaporation device. In order to improve the c-BNfilm adhesion, hexagonal boron nitride (h-BN) films with 25–50 nm thickness were used as buffer layers. The density and Young’s modulus of the c-BNfilms were obtained by investigating the dispersion of surface acoustic waves. In data analysis a two-layer model was applied in order to take the influence of the h-BNlayer into consideration. The values for the density vary from 2.95±0.25 g/cm3to 3.35±0.3 g/cm3, and those for the Young’s modulus from 420±40 GPa to 505±30 GPa. The results are compared with literature values reported for nanocrystalline films, polycrystalline disks and single crystal c-BN. Received: 26 March 2001 / Accepted: 29 March 2001 / Published online: 25 July 2001  相似文献   

9.
Thin films of the conducting polymer poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) were deposited by resonant infrared laser vapor deposition (RIR-LVD). The PEDOT:PSS was frozen in various matrix solutions and deposited using a tunable, mid-infrared free-electron laser (FEL). The films so produced exhibited morphologies and conductivities that were highly dependent on the solvent matrix and laser irradiation wavelength used. When deposited from a native solution (1.3% by weight in water), as in matrix-assisted pulsed laser evaporation (MAPLE), films were rough and electrically insulating. When the matrix included other organic “co-matrices” that were doped into the solution prior to freezing, however, the resulting films were smooth and exhibited good electrical conductivity (0.2 S/cm), but only when irradiated at certain wavelengths. These results highlight the importance of the matrix/solute and matrix/laser interactions in the ablation process.  相似文献   

10.
Thin films of lysozyme and myoglobin grown by matrix assisted pulsed laser evaporation (MAPLE) from a water ice matrix have been investigated. The deposition rate of these two low molecular weight proteins (lysozyme: 14307 amu and myoglobin: 17083 amu) exhibits a maximum of about 1–2 ng/cm2 per pulse at a fluence of 1–2 J/cm2 and decreases slowly with increasing fluence. This rate is presumably determined by the matrix rather by the proteins. A significant fraction of the proteins are intact in the film as determined by MALDI (Matrix assisted laser desorption ionization) spectrometry. The results for lysozyme demonstrate that the fragmentation rate of the proteins during the MAPLE process is not influenced by the pH of the water solution prior to freezing.  相似文献   

11.
Polymers find a number of potentially useful applications in optoelectronic devices. These include both active layers, such as light-emitting polymers and hole-transport layers, and passive layers, such as polymer barrier coatings and light-management films. This paper reports the experimental results for polymer films deposited by resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) and resonant infrared pulsed laser deposition (RIR-PLD) for commercial optoelectronic device applications. In particular, light-management films, such as anti-reflection coatings, require refractive-index engineering of a material. However, refractive indices of polymers fall within a relatively narrow range, leading to major efforts to develop both low- and high-refractive-index polymers. Polymer nanocomposites can expand the range of refractive indices by incorporating low- or high-refractive-index nanoscale materials. RIR-MAPLE is an excellent technique for depositing polymer-nanocomposite films in multilayer structures, which are essential to light-management coatings. In this paper, we report our efforts to engineer the refractive index of a barrier polymer by combining RIR-MAPLE of nanomaterials (for example, high refractive-index TiO2 nanoparticles) and RIR-PLD of host polymer. In addition, we report on the properties of organic and polymer films deposited by RIR-MAPLE and/or RIR-PLD, such as Alq3 [tris(8-hydroxyquinoline) aluminum] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)]. Finally, the challenges and potential for commercializing RIR-MAPLE/PLD, such as industrial scale-up issues, are discussed.  相似文献   

12.
Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O-H stretch) and 3.40 (C-H) μm light at macropulse fluences of 7.8 and 6.7 J/cm2, respectively. Under these conditions, a 0.5-μm thick film can be grown in less than 5 min. Film structure was determined from infrared absorbance measurements and gel permeation chromatography (GPC). While the infrared absorbance spectrum of the films is nearly identical with that of the native polymer, the average molecular weight of the films is a little less than half that of the starting material. Potential strategies for defeating this mass change are discussed. Received: 22 August 2001 / Accepted: 23 August 2001 / Published online: 17 October 2001  相似文献   

13.
We deposited amorphous thin films of boron carbide by pulsed laser deposition using a B4C target at room temperature. As the laser fluence increased from 1 to 3 J/cm2, the number of 0.25–5 μm particulates embedded in the films decreased, and the B/C atomic ratio of the films increased from 1.8 to 3.2. The arrival of melt droplets, atoms, and small molecular species depending on laser fluence appeared to be involved in the film formation. In addition, with increasing fluence the nanoindentation hardness of the films increased from 14 to 32 GPa. We believe that the dominant factor in the observed increase in the films’ hardness is the arrival of highly energetic ions and atoms that results in the formation of denser films. Received: 23 March 2001 / Accepted: 1 July 2001 / Published online: 2 October 2001  相似文献   

14.
Mainly [115]-oriented SrBi2Ta2O9 (SBT) films were prepared on GaAs(100) substrates with TiO2 buffer layers. Both the SBT films and the TiO2 buffer layers were deposited by pulsed laser deposition (PLD) using a KrF excimer laser. The depth profile of the constituent elements observed by Auger electron spectrometry (AES) shows no remarkable diffusion at both the interfaces between SBT and TiO2 and between TiO2 and the GaAs substrate. The electrical characteristics of the Pt/SBT/TiO2/GaAs(100) structures show a ferroelectric hysteresis loop with a small remanent polarization (∼0.5 μC/cm2). Received: 1 March 2002 / Accepted: 3 March 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: +86-25/3595535, E-mail: xhliu81@hotmail.com RID="**" ID="**"Present address: Data Storage Institute, DSI Building, 5, Engineering Drive 1 (off Kent Ridge Crescent, NUS) 117608 Singapore  相似文献   

15.
We report the thin film deposition by matrix-assisted pulsed laser evaporation (MAPLE) of a polymer conjugate with an hydrophilic sequence between metronidazole molecules that was covalently attached to both oligomer ends of carboxylate poly(ethylene glycol) (PEG 1.5-metronidazole). A pulsed KrF* excimer laser was used to deposit the drug-polymer composite films. Fourier transform infrared spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical properties similar to the starting materials. The dependence of the surface morphology on incident laser fluence is given.  相似文献   

16.
Thin amorphous As-Se films were prepared by pulsed laser deposition (PLD) and by classical thermal evaporation techniques. Raman spectra and optical properties (optical gap, Egopt, index of refraction, n, third-order non-linear susceptibility, χ(3)) of prepared films and their photo- and thermally induced changes were studied. The structure of laser deposited films was close to the corresponding bulk glasses contrary to thermal evaporated films. The composition of PLD films was practically unchanged during the process of deposition. The optically and thermally induced changes of n and of Egopt in PLD films are different from the changes in thermally deposited films. The differences are discussed.  相似文献   

17.
Poly(9,9-dioctylfluorene) (PF8) thin films have been deposited by matrix-assisted pulsed laser evaporation (MAPLE) using a KrF excimer laser. The influence of the laser fluence (50-500 mJ/cm2) and the nature of the solvent (chloroform, toluene, tetrahydrofuran) on the films properties have been studied. The chemical composition of the deposited films was investigated by Fourier transform infrared (FTIR) spectroscopy and compared with the one of spin coated films. To investigate the effect of the deposition parameters on the optical properties of the films, photoluminescence (PL) measurements were performed. Poor structural and optical properties were observed for films deposited starting from chloroform solutions. When using toluene as solvent, the spectra characteristics improved with increasing laser fluence, while wide PL spectra were observed. The characteristic emission bands of the PF8 polymer were nicely detected for films deposited starting from a tetrahydrofuran (THF) solution. Moreover, in this last case, the PF8 structure is preserved at high laser fluences, too.  相似文献   

18.
SrBi2Ta2O9 (SBT) ferroelectric thin films with different preferred orientations were deposited by pulsed laser deposition (PLD). Several methods have been developed to control the preferred orientation of SBT thin films. For SBT films deposited directly on Pt/TiO2/SiO2/Si substrates and in situ crystallized at the deposition temperature, the substrate temperature has a significant impact on the orientation and the remnant polarization (Pr) of the films; a higher substrate temperature benefits the formation of (115) texture and larger grain size. The films deposited on Pt/TiO2/SiO2/Si substrates at 830 °C are (115)-oriented and exhibit 2Pr of 6 μC/cm2. (115)- and (200)-predominant films can be formed by using a La0.85Sr0.15CoO3 (LSCO) buffer layer or by annealing amorphous SBT films deposited on Pt/TiO2/SiO2/Si substrates at 450 °C using rapid thermal annealing (RTA). These films exhibit good electric properties; 2Pr of the films are up to 12 μC/cm2 and 17 μC/cm2, respectively. The much larger 2Pr of the films deposited on the LSCO buffer layer and of the films obtained by RTA than 2Pr of the films deposited on Pt/TiO2/SiO2/Si substrates at 830 °C is attributed to a stronger (200) texture. Received: 30 January 2001 / Accepted: 30 May 2001 / Published online: 25 July 2001  相似文献   

19.
Matrix-assisted pulsed laser deposition (PLD) allows a controlled layer-by-layer growth of polymer films. Di-octyl substituted polyfluorene (PF8) and its copolymers were deposited as thin films using matrix-assisted PLD by employing a KrF excimer laser with a fluence of 125 mJ/pulses. The optical and structural properties of these films are compared with spincoated films via Raman spectroscopy, absorption and photoluminescence. The Raman spectra of both PLD and spincoated films are similar indicating that the polymer films deposited via PLD maintain their molecular structure. Both the spincoated and the PLD grown PF8 films that were cast from toluene show the presence of the β phase. Benzothiadiazole substituted PF8 (F8BT) and butyl phenyl-substituted PF8 (PFB) PLD grown films show a slightly broader emission compared to the spincoated films, which is attributed to an enhanced intermolecular interaction in the PLD grown thin films.  相似文献   

20.
Titanium carbide (TiC) is one of the preferred coatings for improving the performance of macroscopic moving mechanical components due to its established wear-resistance. Pulsed laser deposition (PLD) is an excellent method for depositing TiC, because unlike any other deposition process for TiC, PLD offers the capability of producing high-quality films even at room temperature. Using a modified PLD technique, especially designed for the deposition of particulate-free films, TiC coatings have been deposited at room temperature on silicon (Si) and on several types of thin films typically employed for fabricating microelectromechanical systems (MEMS). Our results demonstrate that TiC coatings also offer a high wear-resistance to Si surfaces, which in turn has led to our application of TiC to “moving” Si MEMS devices. The performance of moving Si MEMS devices is limited by their poor operational lifetimes, which have been attributed to the excessive wear at sliding Si interfaces. The work presented here describes a hybrid process, whereby PLD is used in conjunction with a user-friendly Si surface micromachining scheme for inserting wear-resistant TiC coatings between critical sliding Si interfaces in MEMS devices. This paper describes the properties of PLD-TiC for MEMS and the hybrid PLD-surface micromachining process for the integration of TiC coatings into Si MEMS. Received: 23 January 2003 / Accepted: 8 February 2003 / Published online: 28 May 2003 RID="*" ID="*"Corresponding author. Fax: +1-310/563-7614, E-mail: gouri.radhakrishnan@aero.org  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号